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Abstract

A hypothetical model of Alzheimer’s disease (AD) as a uniquely human brain disorder rooted in its exceptional process of myelination is
presented. Cortical regions with the most protracted development are most vulnerable to AD pathology, and this protracted development is
driven by oligodendrocytes, which continue to differentiate into myelin producing cells late into the fifth decade of life. The unique metabolic
demands of producing and maintaining their vast myelin sheaths and synthesizing the brain’s cholesterol supply make oligodendrocytes
especially susceptible to a variety of insults. Their vulnerability increases with increasing age at differentiation as later-differentiating cells
myelinate increasing numbers of axonal segments. These vulnerable late-differentiating cells drive the protracted process of intracortical
myelination and by increasing local cholesterol and iron levels, progressively increase the toxicity of the intracortical environment forming
the basis for the age risk factor for AD. At older ages, the roughly bilaterally symmetrical continuum of oligodendrocyte vulnerability
manifests as a progressive pattern of myelin breakdown that recapitulates the developmental process of myelination in reverse. The ensuing
homeostatic responses to myelin breakdown further increase intracortical toxicity and results in the relentless progression and non-random
anatomical distribution of AD lesions that eventually cause neuronal dysfunction and degeneration.

This process causes a slowly progressive disruption of neural impulse transmission that degrades the temporal synchrony of widely
distributed neural networks underlying normal brain function. The resulting network “disconnections” first impact functions that are most
dependent on large-scale synchronization including higher cognitive functions and formation of new memories. Multiple genetic and
environmental risk factors (e.g. amyloid�-peptide and free radical toxicity, head trauma, anoxia, cholesterol levels, etc.) can contribute to
the cognitive deficits observed in aging and AD through their impact on the life-long trajectory of myelin development and breakdown.
This development-to-degeneration model is testable through imaging and post mortem methods and highlights the vital role of myelin
in impulse transmission and synchronous brain function. The model offers a framework that explains the anatomical distribution and
progressive course of AD pathology, some of the failures of promising therapeutic interventions, and suggests further testable hypotheses
as well as novel approaches for intervention efforts.
© 2003 Elsevier Inc. All rights reserved.
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1. Impact of myelin on human brain function and
degeneration

Alzheimer’s disease (AD) is a uniquely human disease
whose single most important risk factor is age[29,248].
Non-human models that mimic this disease with fidelity
have not been discovered despite the old age that many
animals achieve in captivity. Even though much progress
has been made, a genetically engineered animal model that
has most of the features of AD has been difficult to create
[133,206]. The age risk factor is present in both sporadic
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(non-genetic) and genetic forms of the disorder. Increased
amyloid�-peptide (A�) oligomer deposition is the ultimate
manifestation of genetic forms of AD and is an important
early event in the pathogenesis of AD[104,209,235]. How-
ever, even though gene defects that increase A� production
can accelerate the disease process in familial AD and dis-
orders such as Down’s syndrome, detectable AD pathology
does not develop until the early adult years (typically over
age 30) and clinical symptoms do not appear until years to
decades later despite the presence of the abnormal genes and
their products from birth[208,246].

By itself, the size of the human brain cannot be the
uniquely human risk factor, since other animals with even
larger brains (elephants, dolphins, etc.) do not develop AD

0197-4580/$ – see front matter © 2003 Elsevier Inc. All rights reserved.
doi:10.1016/j.neurobiolaging.2003.03.001



6 G. Bartzokis / Neurobiology of Aging 25 (2004) 5–18

cortical pathology despite achieving long life spans. Dis-
proportionate over-development of specific brain regions
such as the temporal or frontal lobes is also apparently not
uniquely human since recent data indicate that, compared to
other higher primates, those lobes may not be disproportion-
ately larger than other brain regions when controlling for
body size[211]. The human brain does, however, have dis-
proportionately greater white matter volume (approximately
20%) compared to the other higher primates that do not de-
velop AD-like pathology[211] and the percentage of brain
dry weight accounted by myelin in human brain (35%) is
substantially (30%) higher compared to rodents[171].

Human white matter is also unique in its “heterochrono-
logic” development (some regions myelinate on a differ-
ent timeline than others)[116,192] as well as the very
long myelination timeline of the cortical association re-
gions [10,14,21,121,266]. Myelination of axons from the
prefrontal and other association areas (temporal and pari-
etal lobes) continues until the end of the fifth decade
[14,21,49,87,121,266]. This protracted myelination trajec-
tory represents the entirety of the human life span in evolu-
tionary terms (e.g. prior to the 1900s, relatively few individ-
uals lived past the age of 50). These same late-myelinating
neocortical regions are most vulnerable to developing the
pathognomonic lesions of AD consisting of amyloid-rich
extracellular neuritic plaques (NP) and tau-rich intraneu-
ronal neurofibrillary tangles (NFT)[28,235]. Alocortical
brain regions, such as the hippocampus, develop these le-
sions only after the neocortical association regions while
the heavily/early myelinated primary motor and sensory re-
gions are resistant to these changes and develop them only
later in the disease process[28,235]. The available data on
human myelination suggests that the temporal lobe, and
specifically the basal and parahippocampal regions, has the
most protracted cycle of myelination into the fifth and even
sixth decades of life[14,21,27,121].

The production and maintenance of myelin is essential
for normal brain function. Myelination results in saltatory
conduction of action potentials that markedly increases
(>10-fold) signal transmission speed[254]. Speed makes
it possible to integrate information across the highly dis-
tributed neural networks that underlie higher cognitive
functions[10,14,82,97,155,222]. In addition to faster com-
munication across long distances, faster conduction velocity
can also facilitate information flow by allowing for precise
temporal coding of high-frequency bursts of neuronal activ-
ity [273]. Once myelin’s function in saltatory conduction is
compromised (even without frank loss of a myelin segment),
not only is transmission velocity reduced but there is also a
marked increase in the refractory period of the axon. This
increase in refractory period can be as much as 34 times
higher than the value obtained from the non-demyelinated
portion of the same axon[77].

Aging-associated reduction in the number of fast con-
ducting CNS axons of as much as 50% has been demon-
strated in cats[264]. Human stereological studies estimate

that the total length of myelinated axons is reduced by
27–45% in old age, primarily through loss of fibers with
small diameter[177,232] which myelinate later in devel-
opment [131] and are most susceptible to A� pathology
[28]. This aging-related myelin breakdown negatively im-
pacts cognitive performance in primates[173,184]and hu-
mans[87,174,243](Bartzokis et al., unpublished data). The
age-related loss of myelin function may also explain the con-
duction delays observed in aging animals and humans[4,67]
and patients with AD[231]. Myelin loss may also underlie
the reduced myelin staining in post mortem studies of aging
and the aging-related loss of brain volume[14,21,121,157].

Disruptions due to conduction delays, changes in trans-
mission refractory times, or temporal dispersion of impulses
of myelinated tracks[77,148,232,254,264]may have the
greatest impact on synchronization of impulses on which
normal brain functions depend[69,76,230]. The suscep-
tibility to the disruption of timing of impulses would be
most apparent for brain functions that depend on highly
distributed neural networks such as functions involved in
encoding and retrieval of new memories and integration
of higher executive functions[61,73,76,154,245]. These
are the last functional areas to myelinate and the first
to deteriorate with normal aging in monkeys[173,184]
and humans[1,10,75,174,184,256]. These same functions
seem to be most impacted in preclinical and early AD
[10,26,28,40,62,81,130].

2. Oligodendrocytes: the most vulnerable cells
in the brain

Oligodendrocytes, the CNS cells that produce myelin and
underlie the protracted course of human brain development,
are unique in at least five ways that are directly pertinent to
the model. First and possibly most important, is the unique
relationship of oligodendrocytes to the production of choles-
terol. All brain cholesterol is synthesized de novo by oligo-
dendrocytes and the human brain, which is approximately
2% of the body by weight, contains approximately 25%
of the body’s membrane cholesterol[65,163]. Cholesterol
is present in much higher concentrations in plasma mem-
branes, which contain 90% of all cholesterol, than in most in-
tracellular membranes[270]. Cholesterol accounts for 28%
of the brain’s lipid weight[164]. The highly specialized
plasma membranes that form myelin are especially enriched
in cholesterol, accounting for 40% of their lipid content that
is approximately twice the concentration of plasma mem-
branes[172,200]. It is thus not surprising that myelin mem-
brane changes are found to drive brain lipid changes with
age as well as species differences in membrane composition
(for review see Rouser et al.[200]).

Cholesterol is asymmetrically distributed in the lipid bi-
layer of membranes. In plasma membrane, cholesterol is
enriched by 85% in the inner (cytofacial) leaflet[205]. In
the unique myelin membrane bilayer, this asymmetry is
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reversed with its outer (exofacial) leaflet (exposed to the ex-
tracellular environment) being enriched by 40% compared
to the cytofacial leaflet[223]. This very high exofacial dis-
tribution contributes to three properties of cholesterol that
are directly pertinent to the model. First, since cholesterol
does not bind as much water as the polar phospholipids
in the membrane bilayer, membranes with higher choles-
terol levels are relatively dehydrated and promote closer
membrane-to-membrane contact which, amongst other
things, may contribute to the tight packing achieved by
myelin [227]. However, this membrane packing ability is
disrupted by byproducts of lipid oxidation, which could
predispose myelin to breakdown and possibly degrade
its electrical insulation properties necessary for saltatory
conduction[184,227]. Second, its exofacial cholesterol en-
richment may contribute to the free exchange of cholesterol
from oligodendrocytes to neurons and astrocytes with the
aid of apolipoproteins, an exchange that is not observed
for most other lipid components of membranes[200,262].
Finally, the low water binding produced by high cholesterol
levels in myelin may promote the hydrophobic ends of
A� aggregates to preferentially interact with and damage
myelin (for review see[226,262,263]).

The dependence of the brain on oligodendrocyte-produced
cholesterol has implications for CNS development and its
continual functional plasticity. In gray matter, cholesterol
deficits can directly impact neuronal plasticity as CNS
synaptogenesis and dendritic outgrowth are promoted by
oligodendrocyte-derived cholesterol and the impairment of
these remodeling processes may interfere with new learn-
ing [74,145,250]. The critical role of cholesterol in brain
function could make even subtle genetic influences on the
apolipoproteins involved in its transport (e.g. apolipopro-
teins D, E, J, and L) have clinically important impacts on
multiple neuropsychiatric diseases[10,253] as well as AD
[91,106,110,138,262,263].

Second, oligodendrocytes have the highest iron content
of all brain cell types[47,71] and as much as 70% of brain
iron is associated with myelin[60]. This is not surprising
given that cholesterol and lipid synthesizing enzymes require
iron to function[39] and its importance is highlighted by its
involvement in oligodendrocyte differentiation. Age-related
increases in iron levels may contribute to the increased intra-
cellular oxidation necessary to trigger oligodendrocyte pre-
cursors to differentiate[162,189,218]and inadequate iron
levels result in poor myelination and mental deficiencies in
children[47,197].

Normal ferritin, a spherical protein in which upwards of
90% of tissue non-heme iron is stored[79,166], can se-
quester and store iron and other transition metals. Many
normal as well as pathological processes (anoxia, oxida-
tive stress, etc.) that have been shown to damage oligo-
dendrocytes (see below) can also release iron from ferritin
[3,54,66,100,101]. Oligodendrocytes may be more vulnera-
ble than other cells to such iron releases since in addition
to containing the highest iron stores, their particular ferritin

subunit composition makes iron available with greater ease
than in other cells[23,47].

Protection from iron’s deleterious effects is an important
issue for cellular survival. Recent evidence suggests that el-
evated iron levels increase the production of amyloid precur-
sor protein (APP)[195] and that the soluble A� (the initial
A� form produced from APP cleavage) can act as an iron
chelator[146,274]. However, iron and other transition met-
als such as copper and zinc can also promote A� oligomer-
ization [5,53,85,134,146]. Oligomerization makes A� toxic
[53,123,238]making the homeostasis of iron and A� criti-
cally important[52].

Third, the maintenance of their enlarged lipid membrane
(myelin sheath) that is up to 600× the surface area of the
soma membrane and 100× the weight of the soma[164,257]
makes the energy requirements of oligodendrocytes two to
threefold higher than other brain cells[47]. The metabolic
demands are even higher for precursors and oligodendro-
cytes that are actively myelinating new axon segments and
produce three times their own weight in membrane lipids
each day[257]. In adulthood, these differentiating cells are
especially abundant intracortically in the association re-
gions of human brain[14,121]. Since approximately 2–3%
of the oxygen consumed in normal mitochondrial respira-
tion is obligatorily transformed into free radicals[38,120],
cells with high metabolism such as oligodendrocytes may
be at risk due to their elevated levels of damaging oxidative
reactions. The combination of high lipid and iron content,
and high metabolic activity could make oligodendrocytes
especially vulnerable to oxidative damage[101] and oxi-
dized lipids are deleterious to the integrity of the myelin
sheaths[184,227].

Fourth, oligodendrocytes are markedly heterogeneous
based on when in the protracted process of human brain de-
velopment they differentiated into myelin producing cells.
Oligodendrocytes that differentiated late in life ensheath
up to 50 smaller diameter axons as opposed to one oligo-
dendrocyte per myelin segment of large CNS motor and
primary sensory area axons[261]. These late-differentiating
cells cannot produce the same myelin thickness per axon
segment as earlier myelinating oligodendrocytes[131].
The thinner, later myelinating sheaths are more suscep-
tible to functional impairment and destruction[177,232].
In addition, later-differentiating oligodendrocytes have dif-
ferent lipid properties, may have a slower rate of myelin
turnover, and reduced ability for myelin repair than ear-
lier differentiating cells[107,170,189](see Bartzokis[9]
for further review). Thus, later myelinating neurons of the
association areas, like the inferior temporal regions, pre-
frontal, and temporoparietal regions[21,30,156,266]may
be more susceptible to myelin breakdown (and subsequent
neuronal degeneration, see below) than early-myelinating
neurons in the primary motor and visual areas, which
could be more resistant to functional impairment due to
differences such as thicker myelin sheaths[108,109,131]
(see Bartzokis[9] for further review). This continuum
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of development-dependent oligodendrocyte heterogeneity
could contribute to the bilaterally enhanced vulnerability
of late-myelinating intracortical and subcortical regions to
myelin breakdown[10,14,15,18,102,121]. The vulnerability
continuum can explain the bilateral and progressive nature
of functional impairments as progressively more resistant
earlier-myelinating regions succumb to the functional im-
pairments of myelin breakdown[15,16].

Finally, the unique functions, structure, and biochem-
istry of these cells may all contribute to their high and
region-specific vulnerability to a multitude of insults[20].
Oligodendrocytes are more susceptible than neurons and
astrocytes to chronic hypoperfusion[120,129,179,185],
toxic products of activated microglia such as nitric ox-
ide [153,158,214], iron toxicity [127], and excitotoxicity
[2,112,144,147]. In addition, oligodendrocyte precursors
are especially vulnerable to oxidative damage, making
actively myelinating intracortical and subcortical regions
especially vulnerable[7,39,115]. This high vulnerability of
precursor cells is manifested in the wide variety of insults
such as exogenous glucocorticoids[63,114], excitotoxi-
city [198], hypothyroidism[194], nutritional deficiencies
including iron [47,197,257], other heavy metal toxicity
[63,127,167], drugs of abuse such as alcohol[57,105] and
cocaine [11,13,169], hypertension[80,93,94], and brain
trauma[224,242], which can result in myelination arrests
or decrements during the over 5 decade-long developmental
trajectory of human myelination[14,21,121,266].

3. Evidence of myelin damage in brain aging and AD

Multiple investigators have suggested that myelin break-
down may be a contributing factor to the pathology
of both aging [14,43,98,113,121,157,168,183], and AD
[15,17,18,28,44,58,70,96,102,126,139,196,228,233,249].
Widespread and diffuse myelin breakdown has been re-
ported to occur in AD subjects despite the lack of evidence
of infarction, Wallerian degeneration, or white matter amy-
loid angiopathy[15,18,31,34,58,59,72,196]and these white
matter deficits are observed at the earliest or preclini-
cal stages of the disease[15,18,58,102]. Some investiga-
tors attribute the myelin breakdown to ischemia[33,212]
while others consider it to be a primary disease process
[15,17,18,31,44,46,58,96,126,225,228,233,241]that may
be accelerated by or caused by factors such as oligomeric
A� [53,128,196,238].

Like adult myelination, the neurodegeneration of AD is
not global [28,58,191,193,255]. Rather, the neurons most
susceptible to neurodegeneration in AD extend small di-
ameter cortico–cortical axons that myelinate late in life
[28,121,232,235]. The susceptibility of this subset of axons
to myelin breakdown[107,121,152,170,232]may provide a
mechanism through which the apparent progression of cor-
tical AD pathology could occur in a bilateral, predictable
pattern that appears to be the reverse of myelination, as

suggested by Braak and Braak[26]. For example, the genu
of the corpus callosum connects the prefrontal lobes and
myelinates in later years compared to the splenium that
connects the occipital lobes[18,237,266]. Even in adult-
hood, the genu has up to 20–30% of its axons unmyelinated
compared to less than 7% in splenium, which subserves
primary visual pathways predominated by large, heavily
myelinated axons[131,178].

In adult humans, the transentorhinal region and the nearby
neocortical association areas are particularly poorly myeli-
nated[111,247]cited in [21,27] as is the temporal lobe in
general compared to the frontal lobe[14,121]. These same
late-myelinating regions are the focus of the very first A�
deposits and myelin breakdown[58,126,235,236]and are
involved in short-term memory formation that depends on
synchronization of impulses[76] of widely distributed func-
tional areas[176].

Thus, late-myelinating oligodendrocytes and their precur-
sors are present at the cortical site of A� oligomeric deposits
observed in aging and AD. The evidence that the pathogen-
esis of AD is linked to the characteristic neocortical A� de-
position is well established[104,210,235,236]. Recent data
indicate that A� becomes toxic when it oligomerizes[149],
and myelin can be directly damaged by oligomerized A�
[123,238,265]. Furthermore, A� has been shown to promote
oxidative stress and neurotoxicity[136,149,244]and iron has
been shown to interact with A� to promote the formation of
reactive oxygen species[25,160,186,199,219,240,267], for
review see Lynch et al.[136]. Increased levels of lipid per-
oxidation and myelin breakdown have been demonstrated in
the myelin of older compared to younger normal individu-
als [15,18,43]and in the myelin of AD patients compared
to normal older subjects[15,18,44], and myelin integrity is
disrupted by the products of lipid peroxidation[184,227].

4. From myelin damage to neuronal death

The pathognomonic lesions of AD (NFT and NP) appear
in the fourth decade of life and at this stage, neuronal loss is
not observed[191]. As the severity and numbers of these le-
sions progress over the ensuing 30 years, they eventually re-
sult in neuronal loss and manifest clinically as AD[27,175].
Myelin damage or loss can contribute to this process as it has
marked effects on neuronal survival and function through
a variety of mechanisms. The loss of neurotrophic factors
produced by oligodendrocytes can adversely affect their un-
derlying neurons[55,258]. A special case of this role is the
crucial involvement of oligodendrocytes in neurosteroid pro-
duction, both as the producer of the cholesterol backbone
and as the major producer of neurosteroid precursors[32],
which are neurotrophic to axons as well as myelin[187].

In addition, axon myelination markedly reduces neu-
ronal energy expenditure. The loss or dysfunction of ax-
onal myelin would require an estimated increase of up to
5000-fold in neuronal energy expenditure in order to main-
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tain neurotransmission levels[107,170]. Approximately
2–3% of the oxygen consumed in normal mitochondrial
respiration is obligatorily transformed into free radicals
[37,119] and with aging, an increasing percentage of
oxygen is converted to superoxide[182,203,220]. The
aging-related loss/dysfunction of myelin would result in a
further increase in the production of damaging free rad-
icals. Both neurons and especially oligodendroglia (for
reasons described above) are very susceptible to damage
from free radicals. Free radical (oxidative) damage has been
shown to be strongly aging-related[151,216]and has been
implicated in the pathophysiology of AD[56,83,95,135,
140,151,161,190,216,217,219].

An increase in neuronal free radical production has also
been postulated to contribute to AD tangle-related neu-
ropathology[83,140,161,217]. Oxidation of tau induces its
dimerization and polymerization into insoluble filaments
[239], the precursor to the intraneuronal NFT, the sec-
ond pathognomonic lesion observed in AD brain. These
damaging oxidative processes are also observed in other
neurodegenerative diseases and it is thus not surprising that
many other neurodegenerative disorders manifest NFTs
while normal individuals rarely do so[207].

In AD, there may be additional paths connecting the early
pathology of A� oligomer deposits, which is aging-related
and can be seen in normal aging individuals[165,209].
In addition, fatty acid oxidative products and cholesterol
depletion have been shown to promote tau hyperphospho-
rylation and polymerization[74,83]. Thus, multiple mech-
anisms may exist interrelating A� oligomer damage to
lipid membranes, oxidative stress, and tau polymerization
[25,149,160,181,199,240]. In the context of these complex
interrelated damaging processes, the heterogeneity observed
at post mortem examination with some AD brains contain-
ing primarily A� pattern of sequelae while others primarily
a NFT pattern[8,22,91]may be created by differing com-
binations of risk factors and could be used in the context of
this model to better understand those factors.

5. The developmental framework: explaining the age
risk factor of AD

The unique susceptibility of oligodendrocytes to stressors
that occur in adulthood as well as treatment interventions
(hormone replacement, non-steroidal anti-inflammatory, an-
tihypertensive, cholesterol-lowering, etc.) that modify such
stressors could alter the development and subsequent de-
generation trajectories of brain myelin. The impact of both
insults and myelin-sparing interventions would be preferen-
tially greater on later-myelinating regions. In contrast, these
same events would have comparatively less impact on brain
regions and functions such as movement and vision, which
are subserved by larger axons that became fully and heav-
ily myelinated early in life[15,131]. Damage to vulnerable
younger oligodendrocytes and their precursors could thus be

a common mechanism of altering brain developmental pat-
terns that, in older age, manifest as a variety of risk factors
for AD such as early brain trauma, vascular disease, hyper-
tension, nutritional deficiencies, hypercholesterolemia and
reduced hormone levels, etc. through their delayed impact on
the subsequent pattern of myelin breakdown associated with
aging and aging-related diseases such as AD. These delayed
effects would also increase the heterogeneity of symptoms
observed in degenerative diseases depending on when the in-
sults occurred in relation to the regions/functions undergoing
myelination at that particular time of life of the individual.

The essential role of cholesterol and iron in oligodendro-
cyte and brain function can be used to exemplify the utility
of the developmental prospective of the model in its appli-
cation to AD. Membrane cholesterol is directly involved
in AD pathophysiology in multiple and interrelated ways
[24,68,141,165,181]. For example, intramembrane secre-
tases that generate A� produce more A� when membranes
have higher cholesterol content[68,132,260,268]. Oligoden-
drocytes themselves can produce A� [20,84]. This suggests
that as myelination progresses, the increasing numbers of
oligodendrocytes can directly increase the production of A�
and also do so indirectly by providing more cholesterol to
the rest of the brain cells and thus driving the age-related in-
crease in whole brain cholesterol levels to the peak reached
in the fourth decade of life[201]. Unlike other major body
lipids, cholesterol cannot be degraded by mammalian tis-
sue (except for minor pathways involved in hormone and
bile acid metabolism) and the few ways cholesterol can be
removed from brain is by a slow exchange with plasma
[164] after hydroxylation[181] or possibly by sequestra-
tion in NPs [165]. Deficits in hydroxylation is associated
with increased A�, tau, and risk for AD[181]. The in-
creasing availability of cholesterol is supported by evidence
that cholesterol content of the exofacial leaflet of plasma
membranes in brain doubles with age[117,262]. This may
set up a scenario of aging-related increase in intracortical
toxicity as the production as well as oligomerization of A�
is promoted by high cholesterol content of lipid bilayers
[68,159,181,260,271]. It is thus not surprising that deposits
of A� oligomers increase with age and are observed in
otherwise normal aging individuals[64,252]. Furthermore,
epidemiologic studies suggest that elevated peripheral
cholesterol levels in midlife may predispose individuals to
developing AD in old age[124], and medications which re-
duce cholesterol synthesis may be beneficial in preventing
and possibly treating early AD[50,132,181,213,260,262]
possibly by reversing the age-related increase in cholesterol
levels in the exofacial leaflet of plasma membrane[122].
The pathognomonic lesions of AD (NFT and NP) also begin
to appear in the fourth decade of life but at this stage, there
is no neuronal loss[191]. The progression of these lesions
over the ensuing 30 years, eventually results in neuronal
loss and clinical manifestations as AD[27,175].

In the same time frame, the increasing levels of toxic
A� aggregates preferentially bind to cholesterol in mem-
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branes, disrupt cholesterol transport between cells, and can
remove cholesterol from membranes[6] (for review see
[262,268]). The toxicity of oligomeric A� has been shown
to increase with age and myelination[90] and can destroy
oligodendrocytes in vitro[265]. As the disease progresses,
A� oligomer levels rise in patients with preclinical AD
[234]. The increasing A� oligomer-membrane interactions
could thus progressively remove membrane cholesterol lev-
els in older individuals[165,201]and eventually markedly
reduce cholesterol levels in individuals who develop AD as
has been consistently demonstrated[96,143,196,228]. The
cholesterol loss occurs without appreciable loss of phos-
pholipids [96] and much of this cholesterol reduction can
be directly attributed to loss of cholesterol-enriched myelin
[139]. Finally, deficiency in membrane cholesterol promotes
tau phosphorylation and breakdown of microtubule stability
and could thus contribute to intraneuronal NFT[74].

Within the developmental framework of the model, these
dynamic and interrelated age-related changes in membrane
lipids can help explain why treatments that lower choles-
terol, blood pressure, inflammation, or replace declining
hormone levels in mid-life are associated with reduced risk
of developing AD in later life but have not proven effec-
tive therapies for patients that have already developed AD
[78,80,124,188,272]. The developmental model suggests
that cholesterol-lowering medications, as well as other in-
terventions that may lower cholesterol such as hormone
treatments, may have markedly different effects at different
stages of the disease. Such treatments may ameliorate the
process of A� production and aggregation in preclinical
and possibly even early stages of AD (when cholesterol
levels are higher), while being ineffective or possibly exac-
erbating the destructive disease processes once the disease
has progressed (when cholesterol levels are already low)
[78,180,213,272].

The developmental framework of the model can also be
used to better understand the role of increasing iron levels
in brain development and degeneration. Tissue iron is a
powerful promoter of oxidation and damaging free radical
reactions[101,127]and brain tissue iron levels increase with
age from extremely low levels at birth[12,17,19,99,125].
In addition, increased iron levels are associated with ex-
cess damage to mitochondria and their DNA[149,251],
resulting in an increased percentage of oxygen converted
to superoxide with age[182,203,220]. Thus, like increasing
cholesterol and myelination, age-related increases in iron
levels may be an additional risk factor that contributes to
the development of an intracortical environment that makes
myelin especially susceptible to damage with increasing
age. Increasing cortical iron could thus also contribute to
the biological basis for the age risk factor of neurodegener-
ative disorders such as AD[12,17,19]and environmental or
genetic factors that influence brain iron levels could impact
the disease process[48,202].

Of special interest to the hypothesis that oligodendro-
cytes may be involved in the early pathophysiology of aging

and AD is the recent data indicating that the process of
A� oligomerization is mediated in part by transition metal
interacting with A� and by metal-mediated oxidative stress
[52,146]. The observation that iron is consistently found at
the core of plaques[219], and that oligomerization of A� is
promoted by iron and other transition metals such as copper
and zinc[5,53,85,134,146], has reinvigorated searches for
metal chelation treatments for AD[42,150] for review see
[51].

Compared to subcortical gray matter regions, cortical iron
levels are low with the very lowest levels occurring in the
late-myelinating association cortices[99]. Thus, in the vul-
nerable late-myelinating cortical regions, the destruction of
iron-rich oligodendroglia could be the major extracellular
source of transition metal involved in A� oligomerization.
A destructive spiral of iron release causing A� oligomeriza-
tion followed by further oligodendroglial damage and further
iron release could help explain the ever-progressive nature of
AD pathophysiology. As described above for the age-related
increases in brain cholesterol levels[201], age-related in-
creases in brain iron levels[19,99] could help explain why
patients with a genetic predisposition for increased produc-
tion of A� such as Downs syndrome[104] do not develop
pathologic lesions of AD until they reach their early to
mid-30s despite the production of increased A� levels since
birth. Only in the early adult years would both adequate iron
levels and active cortical myelination occur in the associa-
tion regions[14,16,99,121]. Together, these developmental
processes could form the physiologic basis for age as the
major risk factor for AD[16,17,19] and explain the tim-
ing of the appearance of its first pathophysiologic markers
(NP and NFT) in mid-life[15,18,27]. Animal models have
shown that aging renders the brain more vulnerable to A�
neurotoxicity[90,149]; this aging effect is most notable in
higher primates with longer myelination cycles than lower
primates and is absent in aged rats[90].

6. Future directions and prevention-focused
interventions

The involvement of myelin breakdown in the pathophys-
iology of brain aging and AD is entirely consistent with
the A� hypothesis of AD and may help explain some of its
apparent weaknesses[104]. Cortical A� oligomer deposi-
tion, one of the hallmarks of AD, is an age-dependent ex-
tracellular process[137], however elevated A� oligomers
are also observed in white matter[128,196], and A� de-
posits can be observed there[259]. The astrocytic response
to A� deposits in the white matter is less intense than in
cortex, however[128,259], which may contribute to the un-
der appreciation of the impact A� may have on white mat-
ter and myelin in general[196]. Oligomeric A� can damage
myelin[123,238,265]. Oligomeric A� can also increase lipid
peroxidation[229,244], which is increased in AD myelin
[44] and disrupts its integrity[227]. The changes associ-
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ated with brain aging are critical to the toxic effects of
A� [90] and to the cytoskeletal response to intracerebrally
injected A� [149]. This age-related susceptibility and the
timing of NP and NFT appearance is consistent with the
developmental pattern of regionally increasing intracortical
myelination[10,121], cholesterol[117,262], and iron levels
[12,16,17,99,125]of the human brain.

The functional impact of myelin breakdown and the re-
sulting decrease in conduction speed and increase in refrac-
tory times is supported by observations of increased latency
of evoked potential responses in patients with AD and asso-
ciations between these response speeds and cognitive func-
tion [231]. In addition, symmetric and bilateral functional
“disconnection”[88,89]of cortico–cortical communication,
affecting primarily association regions and higher cognitive
functions, are observed in both preclinical and early AD
[10,26,28,41,62,81,130].

Thus, various aspects of the pathophysiology of AD sug-
gest that at the earliest stages of this disease, age-related
damage to late-differentiating oligodendrocytes and their
precursors may predispose to the development of AD
[15,18,58,102]. The model suggests novel myelin-centered
approaches to treatment interventions earlier in the process
may be possible. Multiple promyelinating treatments may
already be available[10]. For example, insulin-like growth
factor-1 can increase myelination[36,92] and inhibit oligo-
dendrocyte apoptosis during primary demyelination[142].
This effect is observed both in white matter tracts such as
the corpus callosum and in cortical gray matter and hip-
pocampal regions, even in the face of nutritional deficiencies
known to reduce myelination[45,269].

Thirty years elapse between the onset of the disease (as
manifested by the appearance of the first NFT and NP) and
the clinical changes suggestive of early AD[175] in the ab-
sence of appreciable neuronal loss[191]. Imaging biomarker
technology has emerged that is safe, repeatable, and widely
available and can track the dynamic changes in brain mem-
branes over the age-span, making it possible to prospec-
tively test the entirety of the model[14,87,221]. Techniques
that are especially sensitive to disruption in myelin integrity
such as relaxometry, magnetization transfer, and diffusion
tensor imaging create the opportunity to prospectively
test the later, degeneration phases of the model[10,14,15,
18,19,86,87,103], while techniques that are especially sen-
sitive to myelination can be used to investigate the devel-
opmental aspects of the model[10,15,86,221](Bartzokis
et al., unpublished data). Thus, the spectrum of dynamic
changes caused by insults as well as therapeutic interven-
tions that may accelerate myelination or remove offensive
factors or correct delays in myelination can be investigated.

Imaging biomarkers could be used to identify individu-
als at high risk for developing cognitive impairments, and
prospectively track the effects of treatment interventions
aimed at preventing the progression of cognitive impair-
ments in populations that have minimal symptoms or are en-
tirely asymptomatic[10,210,215]. Combining imaging and

genetic approaches may provide the opportunity to apply po-
tential treatments in the earliest phases of the disease possi-
bly even before the myelin-damaging process differentiates
from “normal” aging. Such a preventive approach could have
the benefit of allowing less intense interventions that may
be better tolerated and have a larger impact due to its earlier
initiation. Thus, low-dose immunologic[204], cholesterol-
lowering [50,213], metal chelation[42,150], or antioxidant
treatments could prove effective with greatly reduced risk
of untoward side effects. In order to achieve these goals in
the reasonably near future, these technologies must be safe,
widely available, and accessible, and prospective studies
demonstrating their utility must be undertaken[15,16].

7. Conclusions

Alzheimer’s disease is a relentlessly progressive cortical
disorder that in its earliest stages affects cortico–cortical
neurons and begins in later-myelinating association cortices.
Recent evidence suggests that an understanding of brain
aging and the aging-related processes of myelin produc-
tion and subsequent breakdown may be relevant to creating
a useful conceptual model aimed at understanding aging,
AD, and possibly other age-related neurodegenerative dis-
orders[35,118] (see Bartzokis[9] for further details). This
model posits that because of the unique vulnerability of
late-developing oligodendrocytes, myelin breakdown is at
the core of the earliest changes involved in both brain aging
and AD. Myelin breakdown disrupts brain functions that
depend on highly synchronized timing of neuronal impulses
and eventually results in functional “disconnections” of as-
sociation cortical regions, with subsequent loss of neurons
and progression to permanent deficits. The loss of synchrony
affects progressively more networks, and therefore results
in an increasing group of devastating symptoms that we cur-
rently refer to as AD. Thus, genetic and/or environmental
effects that impact myelin development and breakdown will
manifest as risk factors (or protective factors) for the devel-
opment of AD. This model suggests that many pathological
states (e.g. genetic, hormonal, head trauma, hypertension,
hypercholesterolemia, substance abuse, etc.) can impact the
normal age-related pattern of myelin development and thus
impact the pattern of myelin breakdown at older ages.

The model provides a framework that suggests explana-
tions for the special susceptibility of the human brain to
AD, the bilateral regional pattern of degenerative NP and
NFT lesions and their predictable and non-relenting course,
the importance of the age risk factor in the development of
both the idiopathic as well as the genetic process resulting
in these lesions, the substantial dysfunction despite minimal
neuronal destruction in aging and early in the course of AD,
and the similarity of neurocognitive deficits observed in ag-
ing and preclinical AD.

This temporally expanded model of brain development
and its dynamic interaction with brain degeneration creates



12 G. Bartzokis / Neurobiology of Aging 25 (2004) 5–18

the possibility of testing its underlying hypotheses through
prospective imaging studies focused on areas of active
myelination, combined with neurocognitive evaluations and
genetic studies targeting proteins and lipids involved in
myelination. The model predicts that medications or other
interventions (hormonal, dietary) that protect myelin, en-
hance myelination, or prevent its breakdown could result
in amelioration of deficits in both normal brain aging and
aging-related neurodegenerative disorders such as AD.
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