
Los Alamos Bets on ENIAC: Nuclear
Monte Carlo Simulations, 1947–1948

Thomas Haigh
University of Wisconsin–Milwaukee

Mark Priestley

Crispin Rope

From rich archival sources, the authors reconstruct the evolution of a
program first run on ENIAC in April 1948 by a team including John and
Klara von Neumann and Nick Metropolis. This was not only the first
computerized Monte Carlo simulation, but also the first code written in
the modern paradigm, usually associated with the “stored program
concept,” ever executed.

By reconstructing the Monte Carlo calcula-
tions carried out on ENIAC in 1948 on behalf
of Los Alamos Scientific Laboratory, this
article examines programming practice and
scientific computation at the dawn of mod-
ern computing. This is the final article in a
three-part series published in Annals explor-
ing modifications made to ENIAC that made
it the first computer to support what we have
elsewhere defined as the “modern code para-
digm,” one of a cluster of related innovations
propagated by John von Neumann in his
1945 “First Draft of a Report on the EDVAC.”1

(The first article in this series, “Reconsidering
the Stored Program Concept,” examined the
history of the “stored program concept”
and proposed a set of more specific alterna-
tives.2 The second, “Engineering ‘The Miracle
of the ENIAC’: Implementing the Modern
Code Paradigm,” explored the conversion of
ENIAC to the new programming method and
put its capabilities into context against other
computers of the late 1940s.3) The term
“modern code paradigm” describes the con-
trol mechanism adopted by modern com-
puters, including the automatic execution of
programs stored in an addressable memory
and expressed as a series of operation codes
followed by arguments. Programs written in
this new style relied on conditional or calcu-
lated jumps to change the course of their exe-
cution and modified the addresses acted on
by instructions to iterate through data
structures.2

The ENIAC Monte Carlo program run in
April and May 1948 was both the first compu-
terized Monte Carlo simulation and the first
program written in the new paradigm to
be executed on any computer. The evolution
we document here from computing plan
through a series of flow diagrams and plan-
ning documents to a revision of the code after
initial tests provides a window through
which we can observe the first full revolution
of what would later be thought of as the soft-
ware system development lifecycle. Although
scholarly historians of computing have good
reason to be leery of the hunt for “firsts” that
dominated our field in its infancy, this does
give the code an undeniable historical
interest.

More than a decade ago, historians of
computing identified software history as a
vital and under-researched area and have
since gone a long way toward filling this
gap.4 After an early focus on programming
language design, more recent investigations
have focused on the history of particular soft-
ware companies and their founders, eco-
nomic analysis of different sectors of the
software industry, the software engineering
movement and its relationship to the identity
of programming, and the development of
packaged software genres such as spread-
sheets, word processors, and database man-
agement systems.5

Studies of what programmers and other
kinds of system developers actually do, of

42 IEEE Annals of the History of Computing Published by the IEEE Computer Society 1058-6180/14/$31.00 �c 2014 IEEE

software as a technological artifact, or of the
coevolution of hardware and software have
remained conspicuous by their absence. The
importance of these topics has been recog-
nized in related fields, including emerging
communities focused on software studies,
critical code studies, or platform studies.
Within broader historical communities, his-
torians of technology have placed an in-
creasing emphasis on the importance of
understanding technology in use, exploring
the social meanings and technical cultures in
which technologies are enveloped.6

Historians of science have placed a corre-
sponding emphasis on studies of scientific
practice, examining what scientists actually
do inside and outside the laboratory. The
study of instrumentation, technologies used
to observe and measure aspects of nature, has
been a particularly vibrant field. This article
engages directly with the computations dis-
cussed in Peter Galison’s classic “Computer
Simulations and the Trading Zone.” That
chapter depicted early computer simulation
as the product of a new heterogeneous com-
munity with “a new cluster of skills in com-
mon, a new mode of producing scientific
knowledge” constituted by “common activ-
ity centered around the computer.”7 Differ-
ent kinds of expertise were “traded” around
this common object. Galison suggested that
ENIAC’s Monte Carlo calculations “ushered
physics into a place paradoxically dislocated
from the traditional reality that borrowed
from both experimental and theoretical
domains” by building “an artificial world in
which ‘experiments’ (their term) could take
place” within computers.8 The status of simu-
lation as a new kind of scientific experimen-
tation has since been a major concern for
philosophers of science and for historians of
computing, such as Michael S. Mahoney and
Ulf Hashagen.9

Galison’s chapter is revered more for its
concepts and argument than for its detailed
analysis of the specifics of early nuclear simu-
lations. He first writes in some detail on John
von Neumann’s 1944 work on numerical
methods for the treatment of the hydrody-
namic shocks produced within exploding
nuclear weapons. Although a greatly simpli-
fied model of the ignition of a fusion weapon
provided ENIAC with its first actual problem,
run in late 1945 and very early 1946, this was
not a Monte Carlo simulation. Turning next
to Monte Carlo, Galison uses archival corre-
spondence to explore the techniques used
to produce pseudorandom numbers and

sketches in von Neumann’s published 1947
plan for the simulation of neutron diffusion
in a fission reaction. However, Galison does
not follow, or even mention, the main topic
of this article: the development of this initial
sketch into an evolving set of ENIAC pro-
grams used for at least four distinct batches of
Monte Carlo fission simulations during 1948
and 1949. Instead, his narrative jumps from
von Neumann’s 1947 enthusiasm for fission
Monte Carlo to 1949 plans to simulate an
entirely separate physical system, Edward Tell-
er’s design for a “Super” fusion bomb.10 Anne
Fitzpatrick filled some of these gaps from the
Los Alamos perspective, but our current article
provides the first detailed examination of the
1948 Monte Carlo simulations.11

Monte Carlo methods proved to be of great
importance to scientific computing and oper-
ations research after their computerized debut
on ENIAC. The original code’s direct descend-
ants, run on computers at Los Alamos and
Livermore laboratories, were a vital aspect of
weapons design. They drove the needs of two
of the world’s most important purchasers of
high-performance computer systems and so,
according to Donald MacKenzie, exerted a
direct influence on the development of super-
computer architecture.12 Monte Carlo meth-
ods were one of the most important and
widely adopted techniques in the transforma-
tion of scientific practices around computer
simulation.

Beyond their established importance to
the history of science, the Monte Carlo pro-
grams run on the ENIAC in 1948 are also of
considerable importance to the history of
software. We believe them to be the best
documented application programs run on
any computer during the 1940s, allowing us
to assemble a detailed reconstruction of the
programs as run. We located several original
flow diagrams including the final version for
the spring 1948 calculations, the second
major version of the program code in its
entirety, and a detailed document describing
changes made between the first and second
versions of the program. We also consulted
the ENIAC operations log book, which docu-
ments each day of machine activity during
the period and the process by which ENIAC
was converted into a machine able to run
code written in the modern paradigm.

The calculations also shed light on an
underexplored aspect of the work of John
von Neumann and his Princeton-based col-
laborators, who were then the most influen-
tial group of computing researchers in the

43July–September 2014

United States and had been intimately
involved in creating and disseminating cru-
cial ideas on the design and programming
of electronic computers such as the von
Neumann architecture, the modern code
paradigm, subroutine libraries, and flow dia-
grams.13 Their work on ENIAC’s new instruc-
tion set and the Monte Carlo code took place
as they were moving from the design of the
Institute for Advanced Studies computer,
which provided the template for most of the
electronic computers constructed in the
United States in the early 1950s, to its con-
struction, issuing in the process an influential
series of reports on programming and dia-
gramming methods.14 The material we have
uncovered captures changes in the team’s
thinking about the structure of the computa-
tion as they absorbed the implications of the
modern code paradigm, in particular the flex-
ibility its control structures of branches and
loops offered in comparison with earlier con-
trol methods embodying fixed ideas about
computational structures.

Monte Carlo Origins
There is no single Monte Carlo method.
Rather, the term describes a broad approach
encompassing many specific techniques. As
its name lightheartedly suggests, the defining
element is the application of the laws of
chance. Physicists had traditionally sought to
create elegant equations to describe the out-
come of processes involving the interactions
of huge numbers of particles. For example,
Einstein’s equations for Brownian motion
could be used to describe the expected diffu-
sion of a gas cloud over time, without need-
ing to simulate the random progression of its
individual molecules. There remained many
situations in which tractable equations pre-
dicting the behavior of the overall system
were elusive even though the factors influ-
encing the progress of an individual particle
over time could be described with tolerable
accuracy.

One of these situations, of great interest to
Los Alamos, was the progress of free neutrons
hurtling through a nuclear weapon as it
began to explode. As Stanislaw Ulam, a math-
ematician who joined Los Alamos during the
war and later helped to invent the hydrogen
bomb, would subsequently note, “Most of
the physics at Los Alamos could be reduced
to the study of assemblies of particles inter-
acting with each other, hitting each other,
scattering, sometimes giving rise to new
particles.”15

Given the speed, direction, and position
of a neutron and some physical constants,
physicists could fairly easily compute the
probability that it would, during the next
tiny fraction of a second, crash into the
nucleus of an unstable atom with sufficient
force to break it up and release more neutrons
in a process known as fission. One could also
estimate the likelihood that neutron would
fly out of the weapon entirely, change direc-
tion after a collision, or get stuck. But even in
the very short time span of a nuclear explo-
sion, these simple actions could be combined
in an almost infinite number of sequences,
defying even the brilliant physicists and
mathematicians gathered at Los Alamos to
simplify the proliferating chains of probabil-
ities sufficiently to reach a traditional analyti-
cal solution.

The arrival of electronic computers offered
an alternative: simulate the progress over
time of a series of virtual neutrons represent-
ing members of the population released by
the bomb’s neutron initiator when a conven-
tional explosive compressed its core to form a
critical mass and trigger its detonation. Fol-
lowing these neutrons through thousands of
random events would settle the question stat-
istically, yielding a set of neutron histories
that closely approximated the actual distribu-
tion implied by the parameters chosen. If the
number of fissions increased over time, then
a self-sustaining chain reaction was under-
way. The chain reaction would end after an
instant as the core blew itself to pieces, so the
rapid proliferation of free neutrons, measured
by a parameter the weapon designers called
“alpha,” was crucial to the bomb’s effective-
ness in converting enriched uranium into
destructive power.16

The weapon used on Hiroshima is esti-
mated to have fissioned only about 1 percent
of its 141 pounds of highly enriched ura-
nium, leaving bomb designers with a great
deal of scope for refinement. Using Monte
Carlo, the explosive yield of various hypo-
thetical weapon designs could be estimated
without using up America’s precious stock-
piles of weapons-grade uranium and pluto-
nium. This was, in essence, an experimental
method within a simulated and much simpli-
fied reality.

The origins of the Monte Carlo approach
have been explored in a number of histories
and memoirs, so we need not attempt an
exhaustive account here. Ulam later recalled
developing the basic idea with John von
Neumann during a long car ride from Los

Los Alamos Bets on ENIAC: Nuclear Monte Carlo Simulations, 1947–1948

44 IEEE Annals of the History of Computing

Alamos in 1946.17 Over the next few years
both men, along with several of their Los Ala-
mos colleagues, would actively promote the
new approach within the scientific commun-
ity. For example, von Neumann was already
discussing its possible use in his 13 August
contribution to the famous Moore School
Lectures of 1946.18

Early Planning for Los Alamos
Monte Carlo
The earliest surviving planning for what
became the ENIAC Monte Carlo simulations
comes in a manuscript dispatched by John
von Neumann as a letter to Los Alamos physi-
cist Robert Richtmyer on 11 March 1947. It
included a detailed plan for simulation of the
diffusion of neutrons through the different
kinds of material found within an atomic
bomb.19 The physical model proposed by
von Neumann in his initial letter was a set of
concentric spherical zones, each containing a
specified mixture of three types of material:
“active” material where fission would take
place, “tamper” to reflect neutrons back to-
ward the core, and material intended to
slow the neutrons before a collision took
place.20 The spherical model simplified com-
putation because the only information
needed to model a neutron’s path was its dis-
tance from the center, its angle of motion rel-
ative to the radius, its velocity, and the
elapsed time.21

This established the physical model used
the following year on ENIAC. In a 1959 lec-
ture, Richtmyer gave a cogent explanation of
the approach taken, writing of the calcula-
tions that

[T]hey were about as sophisticated as any ever
performed, in that they simulated complete
chain reactions in critical and supercritical sys-
tems, starting with an assumed neutron distri-
bution, in space and velocity, at an initial
instant of time and then following all details
of the reaction as it develops subsequently.

To get an impression of the kind of problem
treated in that early work, let us consider a crit-
ical assembly consisting simply of a small
sphere of some fissionable material like U235
surrounded by a concentric shell of scattering
material.22

Von Neumann wrote of the proposed
computing plan that “[i]t is, of course, nei-
ther an actual ‘computing sheet’ for a
(human) computer group, nor a set-up for
the ENIAC, but I think that it is well suited
to serve as a basis for either.” However, his

preference for ENIAC was already clear from
the detailed consideration he gave to its use
and his conclusion that “the problem … in
its digital form, is well suited for the
ENIAC.”23 At this point, he does not yet seem
to have thought of changing ENIAC’s pro-
gramming method.

The maximum complexity of ENIAC pro-
grams, in its initial programming mode, was
determined by a variety of constraints spread
around the machine. These limitations were
complex and their interplay depended on the
particular program.24 Von Neumann thought
it “likely that the instructions given on
this ‘computing sheet’ do not exceed the ‘log-
ical’ capacity of the ENIAC.”25 He intended
to implement the plan as a single ENIAC
setup, segregating on the function tables all
the numerical data characterizing a particular
physical configuration within the basic
geometry being simulated.

Von Neumann planned that each punched
card would represent the state of a single neu-
tron at a single moment in time. After read-
ing a card, ENIAC would simulate the next
step of this neutron as it moved through the
bomb and punch a new card representing its
updated status. Random numbers were used
to determine the distance the neutron would
travel before colliding with another particle.
If this took the neutron into a zone contain-
ing different material, the neutron was said
to have “escaped” and a card was punched
recording the point at which it moved from
one zone to another. Otherwise, a further
random choice was made to determine the
type of the collision: the neutron could be
absorbed by the particle it hit, in which case
it ceased to participate in the simulation; it
could bounce off the particle, being scattered
with a randomly assigned change in direction
and velocity, or the collision could trigger a
fission, yielding up to four “daughter” neu-
trons whose directions were randomly deter-
mined. Cards were punched describing the
outcome of the collision. The output deck
would be fed back in for repeated processing
to follow the progress of the chain reaction as
far as required.

Von Neumann’s eagerness to harness exter-
nal computing resources for Los Alamos was
understandable. Until 1952 Los Alamos itself
operated nothing more sophisticated than
IBM punched-card machines. So great was its
appetite for computer power that a team from
the lab had taken control of ENIAC for several
weeks from the end of 1945, before it had
even been declared fully operational. Several

45July–September 2014

years later, when word spread that the
National Bureau of Standards SEAC (Standards
Eastern Automatic Computer) was almost
working, Metropolis and Richtmyer arrived
from Los Alamos to commandeer it.26 Code
for Los Alamos was also run on IBM’s show-
piece SSEC (Selective Sequence Electronic Cal-
culator) in its New York headquarters.

In a letter sent to Ulam in March 1947,
von Neumann reported that the “com-
putational set-up” was “investigated more
carefully from the ENIAC point of view by
H.H. and A.K. (Mrs.) Goldstine. They will
probably have a reasonably complete ENIAC
set-up in a few days. It seems that the set-up,
as I sent it to you (assuming third-order poly-
nomial approximations for all empirical
functions), will exhaust about 80–90 percent
of the ENIAC’s programming capacity.”27

It is unclear how close the Goldstines got
to creating a conventional ENIAC setup for
Monte Carlo before abandoning this ap-
proach. Instead, as discussed in our compan-
ion paper, “Engineering ‘The Miracle of the
ENIAC,’”3 their efforts shifted, by mid-May at
the latest, to a major effort to reconfigure
ENIAC to support the modern code para-
digm. This project also involved Richard
Clippinger and other staff from the Ballistics
Research Laboratory, von Neumann himself,
and a group of contractors led by Jean Bartik.
The change would lift most of the arbitrary
constraints that ENIAC’s original design had
imposed on its versatility as a general-pur-
pose computer. This allowed for development
of a considerably more ambitious Monte
Carlo program than the one originally
sketched by von Neumann, at the cost of
deferring its execution until ENIAC had been
converted to the new control mode. It also
meant abandoning ENIAC’s original style of
programming, and the experience with this
technique gained during its 1945–1946 oper-
ation at the Moore School, for the new and so
far untested approach associated with the
EDVAC design and the machine being built
at the Institute for Advanced Studies.

In the second half of 1947, work on com-
puterized Monte Carlo simulation for Los
Alamos centered on a single office at the
Institute for Advanced Study in Princeton. Its
inhabitants included Adele Goldstine and
Richtmyer, who had been dispatched from
Los Alamos to liaise with what was known
informally as the laboratory’s “Princeton
Annex.”28 However, the focus of their work
soon shifted from Monte Carlo to Hippo, a
different kind of atomic simulation. Gold-

stine remained engaged through 1947 and
into 1948 on ENIAC coding for Hippo, until
this target computer was eventually aban-
doned in favor of IBM’s SSEC.

Primary responsibility for diagramming
and coding Monte Carlo seems to have shifted
to the third inhabitant of that busy office,
Klara (“Klari”) von Neumann. Klara Dan had
met John von Neumann in 1937, during one
of his regular visits to his hometown of Buda-
pest. The next year they divorced their spouses
(von Neumann’s had already left him) and
married each other. It was his second marriage
and her third. As war began in Europe, the
new Mrs. von Neumann was settling into the
role of an academic wife in Princeton. While it
raged, her husband grew ever busier, ever
more famous, and ever more frequently
absent. Their marriage was strained.29

Klara was 35 years old when she began
to contribute officially to ENIAC conversion
planning and Monte Carlo programming
around June 1947.30 Her family had been
wealthy and well connected, and she grew up
in an intellectually stimulating environment,
but her formal education in mathematics and
science had finished at an English boarding
school. She wrote later that “I had some col-
lege algebra and some trig, just enough to pass
my matriculation exams, but that was some
fifteen-odd years ago and, even then, I only
passed the test because my math teacher
rather appreciated my frank admission that I
really did not understand a single word of
what I had learned.”31 She loved the easy
camaraderie between the Eastern European
scientists she encountered at Los Alamos on a
visit at Christmas 1945. According to George
Dyson, who profiled her in his recent book
Turing’s Cathedral, “sparks between Klari and
Johnny were rekindled and they began collab-
orating” on his computer work.32 She took to
it with remarkable ease, despite her later and
characteristically insecure self-denigration as a
“mathematical moron” serving John as an
“experimental rabbit” in a Pygmalion-like
attempt to create a computer coder from
unpromising materials. Programming, she
found, was “just like a very amusing and
rather intricate jigsaw puzzle, with the added
incentive that it was doing something
useful.”33

From Computing Plan to
Flow Diagram
As the team in Princeton worked to transform
the original computing plan into the design
of a fully articulated program for the ENIAC,

Los Alamos Bets on ENIAC: Nuclear Monte Carlo Simulations, 1947–1948

46 IEEE Annals of the History of Computing

it was guided by the programming method
that John von Neumann had previously
developed with Herman Goldstine. Their
reports on “Planning and Coding Problems
for an Electronic Computing Instrument,”
issued in 1947 and 1948, put flow diagrams
as the heart of a fairly rigorous approach for
the translation of mathematical expressions
into machine language programs.34 This
technique was far more nuanced and mathe-
matically expressive than the simplified flow-
charts used by the introductory computing
texts of later decades to represent sequences
of operations.

In his letter to Richtmyer, von Neumann
had expressed the computation as a single
sequence of 81 simple steps, most of which
involved the retrieval or calculation of a
single value. Predicates describing certain
properties of the current situation were eval-
uated and then used to specify whether cer-
tain subsequent steps should be executed or
ignored.

Flow diagrams, on the other hand, explic-
itly showed the splitting and merging of pos-
sible paths of control through a computation.
This reflected the modern code paradigm,
in which execution paths could diverge fol-
lowing conditional transfer instructions. In
some situations, for example when deciding
whether a neutron was traveling inward or
outward in the assembly, the translation from
the computing plan to a flow diagram was
fairly straightforward. In other cases, signifi-
cant changes to the structure of the original
computation were required.

Two complete Monte Carlo flow diagrams
from 1947 have been preserved, along with a
number of partial and summary diagrams,
and with the aid of these it is possible to trace
the evolution of the first run program in con-
siderable detail, culminating in a complete
diagram dated 9 December 1947.35 The devel-
opment seems to have followed the notation
and methodology laid down in the “Planning
and Coding” reports fairly closely and, given
the success of the effort, to have demon-
strated its utility. The diagrams themselves
remain relatively easy to follow and squeeze a
great deal of information on different aspects
of the program onto a single (in the final ver-
sion) piece of paper.

The earlier diagram is in the handwriting
of John von Neumann. Associated with it are
plans for the storage of numerical data in
ENIAC’s third function table and an estimate
of the running time of the program.36 This
was obtained by multiplying the “repetition

rate” of each box in the flowchart (the num-
ber of times it would be executed in a typical
computation) by the time taken to execute
the code in that box. This involved knowing
the duration of each instruction in “add
times,” the quantum of time measurement in
ENIAC programs. The existence of these esti-
mates implies that Monte Carlo coding was
first carried out using a version of the “60
order” instruction set being planned for in
fall 1947, although we have so far located
only a subroutine to generate random num-
bers and a small fragment of other code.37

The timing estimates were later refined with
the aid of an overview flow diagram repre-
senting just the structure of the computa-
tion.38 This diagram was kept up to date as
the design evolved and changes were made
to the algorithms in various parts of the cal-
culation, as Table 1 summarizes.

This was a complex program by the stand-
ards of the day. The December 1947 flow dia-
gram included 79 operation boxes, many
involving multiple computational steps (see
Figure 1).

The program was carefully structured in-
to largely independent functional regions.
Many of them are single-entrance, single-exit
blocks. These regions first appeared in von
Neumann’s diagram, which was divided into
10 spatially distinct subdiagrams linked by
connectors. Twelve regions were made ex-
plicit and labeled in the subsequent overview
diagram, and they are clearly visible in the
December 1947 diagram, where many of the
boundaries between the regions are marked
by annotations in the form of “storage tables”
noting the variables calculated in the preced-
ing region and the accumulator assigned to
each.39

As Table 1 indicates, the changes in the
evolution of the program can be tracked by
the rather confusing conventions used to
assign numbers to the operation boxes in the
flow diagram. The basic sequence of boxes 0*
to 54* implemented the functionality of
the original computing plan along with the
modifications suggested by Los Alamos. The
switch from ENIAC’s original programming
method to its new implementation of the
modern code paradigm allowed for a signifi-
cant expansion of the program’s scope and
complexity. Thus, this original sequence
accounted for little more than half of the
eventual code. Changes made as develop-
ment moved from the original plan to the
first Monte Carlo code went far beyond elab-
orating storage mechanics or expressing

47July–September 2014

processes in a different notation to alter the
structure of the computational process itself.
Among other things, these changes reduced
the need for card operations, which were

thousands of times slower than electronic
processing, and enabled ENIAC to automate
ever greater portions of the overall Monte
Carlo process.

Table 1. Structure and evolution of the Monte Carlo programs.*

Region Description
Von Neumann/
Richtmyer plan

Von Neumann
flow diagram

“First Run” program
(from Dec. 1947
flow diagram)

“Second Run”
program

Early 1947 Summer 1947 Spring 1948 Autumn 1948

A Read card and store the

neutron’s characteris-

tics. If the neutron is a

fission product, calcu-

late new values for its

direction and velocity.

0 0*–8* 1*–8* Restructured

Virgin cards: 0–6

Output cards:

10–16

Calculate parameter k*,

the random parameter

used in region E to

determine the expected

distance to a collision.

N/A (numbers

produced

externally)

9*–17* New algorithm 1�–4� 40–45

B Find neutron’s velocity

interval; this value is

used in region D to find

relevant cross-section

values.

1� 13 Simplified 1� 7 30–36

C Calculate distance to

zone boundary.

1–15 18*– 23* 18*–23* 20–26

D Calculate cross-section

of material in zone.

14� 17:1 14� 17:1, 24* 46

E Determine if terminal

event on current trajec-

tory is collision or

escape.

16–47 24*–27* 25*–27* 47–49

Determine if a census

comes first.

28*–29* 28*–30* 50–54

F Discriminate between

terminal events. Update

neutron characteristics

as needed.

47 30*–35* 31*–35* 55–57

G Refresh random

number.

Inline code 6* Subroutine q/x Subroutine q/x

H Determine collision

type (absorption, scat-

tering, or fission).

48–53 18� 27 18� 27 65–69

J Elastic scattering. 54–59, 61–68 51*–52* 51*–52* 74–76

K Inelastic scattering. 53*–54* 53*–54* 75–78

L Absorption/fission. 54–59, 65–81 36*–46* Simplified 36*–39*, 46* 70–73

M Print card and restart

main loop.

No looping 51,

69, 73, 77, 81

47*–50* 37.1*, 47*–50* 58–64

N Zonal escape. 48–50 Computation loops without printing New process

79–85

*The descriptions are ours, but the regional structure and letters assigned are from an original flow diagram. The numbers
in cells are the box labels used on the various diagrams.

Los Alamos Bets on ENIAC: Nuclear Monte Carlo Simulations, 1947–1948

48 IEEE Annals of the History of Computing

Change 1: Relaxation of Notation
Looking closely at the succession of draft
flow diagrams gives some insight into the
experience of using this technique to develop
an actual program. Von Neumann’s early dia-
gram sticks closely to the notation published
in the “Planning and Coding” reports: sym-
bolic names are used for storage locations,
and substitution and operation boxes are
used in a systematic manner to keep mathe-
matical notation separate from the handling
of storage. He extended the notation slightly
by including operations in the alternative
boxes and by using ad hoc notes within oper-
ation and storage boxes to document the
effect of input and output operations.

The team seems to have found the com-
plete methodology defined in the IAS re-
ports to be excessively cumbersome, and by
December, their use of the flow diagram nota-
tion had visibly evolved (see Figure 2). For
example, the symbolic labels for storage loca-
tions were replaced by explicit references to
ENIAC’s accumulators. Decisions about data
storage had been taken, and there was evi-
dently no perceived benefit in deferring their
documentation to a later stage in the process.
The careful distinctions made in the reports
between the different types of boxes and their
contents are becoming increasingly blurred:
the substitution boxes that are meant to
control loops have largely been replaced by
operation boxes, and storage updates that
officially should be located in separate opera-
tion boxes are appearing with increasing fre-
quency in alternative boxes.

Change 2: A Subroutine to Handle
Random Numbers
The heart of a Monte Carlo simulation is
choosing between different possible outcomes
on the basis of their probability. These choices
were driven by random numbers, now re-
quired in unprecedented numbers. In von
Neumann’s original plan for the computation,
each card fed into ENIAC included the ran-
dom numbers used to determine a neutron’s
fate. Getting these numbers onto the cards
would have involved an additional process to
produce cards holding random numbers, fol-
lowed by a merge process using conventional
punched card machines to create a new card
holding both the existing data on a particular
neutron (read from one card) and the random
numbers (read from another).

As planning continued, von Neumann
realized that the ENIAC could itself produce
quasi-random numbers. In various letters, he

described a technique that involved squar-
ing an eight- or 10-digit number, and then
extracting the middle digits to serve as the
next value.40 Thanks to the new programming

Figure 1. Detail from the December 1947 flow diagram. These largely

independent functional regions first appeared in John von Neumann’s

diagram, which was divided into 10 spatially distinct subdiagrams

linked by connectors. (Reproduced from the Library of Congress with

permission of Marina von Neumann Whitman. The full diagram,

together with other project materials, is available from www.

EniacInAction.com.)

Figure 2. The structure and mathematics of this part of the calculation

were almost unchanged between drafts, but in John von Neumann’s

early draft (white on black) the computation relies on symbolic storage

locations (such as B.4). The December 1947 version uses accumulator

numbers directly for storage (for example, 19). Note also the complex

expressions accommodated within individual flow diagram boxes, such

as 52*. (Reproduced from the Library of Congress with permission of

Marina von Neumann Whitman.)

49July–September 2014

mode, the logical complexity of a program
was limited only by the space available for its
instructions on the function table. Thus,
these numbers could be produced within the
Monte Carlo program itself much more rap-
idly than they could be read from punched
cards.

In the earlier draft flow diagram, a cluster
of three boxes representing this process
(without providing much detail on the algo-
rithm to be used) was simply duplicated in-
line at the four points in the computation
where a new random number was needed.
The December 1947 version placed a detailed
treatment of the process in a special box,
entered from two separate places in the flow
diagram.41 The random digits it computed
were placed in one of the ENIAC’s accumula-
tors. This exploited the newly developed
concept of a subroutine and demonstrated,
apparently for the first time, the incorpora-
tion of a subroutine call into the Goldstine
and von Neumann flow diagram notation.42

Their “Planning and Coding” series had not
so far dealt with subroutines (these would be
covered in the final installment issued in
1948). However, the April 1947 publication
did introduce a “variable remote connection”

notation that diagrammed code in which the
destination of a jump was set dynamically. In
the December 1947 flow diagram, a variable
remote connection was used to return to the
main sequence at the end of the subroutine
box (see Figure 3).

The invention of the “closed subroutine,”
defined by Martin Campbell-Kelly as one that
“appeared only once in a program and was
called by a special transfer-of-control se-
quence at each point in the programme where
it was needed,” is conventionally attributed to
David Wheeler’s work with the EDSAC, which
began operation in 1949.43 This is distin-
guished from the “open subroutine,” in
which a block of code is duplicated as needed,
a technique used on the Harvard Mark I some
years earlier. We believe that this ENIAC
Monte Carlo program was the first code with a
closed subroutine to be executed.44

Change 3: Lookup of Cross-section Data
The odds that a moving object crashes into
an obstacle during a particular time period
will change with its velocity, as will the chan-
ces of a destructive outcome. In nuclear
physics, the probability that a neutron will
interact with a nucleus to produce a particu-
lar result, such as absorption, fission, or scat-
tering, is referred to as a collision cross-section.
This depends on both the velocity of the neu-
tron and the nature of the material it is travel-
ling through. Von Neumann’s original plan
represented the cross-sections as functions of
velocity, and he noted that these functions
could be tabulated, interpolated, or approxi-
mated using polynomials. By the time the
earlier flow diagram was produced, he had
decided to use lookup tables. The range of
possible neutron velocities was divided into
10 intervals, giving 160 possible combina-
tions of collision type, velocity interval, and
material. A representative cross-section func-
tion value for each combination was stored
in a matrix on the numeric function table,
and his flow diagram incorporated a new
sequence of boxes 1� 27 to handle the
lookup procedure.45

A neutron’s velocity interval was found by
searching through a table of interval bounda-
ries. This search was coded as a loop, provid-
ing an early example of an iterative procedure
whose purpose was not simple calculation.
Once the velocity interval had been located,
the appropriate cross-section value could
easily be retrieved from the function table by
calculating the address corresponding to the
current combination of parameters.

Figure 3. This detail from the December 1947 flow diagram shows both

the subroutine (far left) and one of the points from which it is called

(the connection q following box 32.1*). This box sets the value of the

variable remote connection x to x2 so that control will return to box 18

on completion. (Reproduced from the Library of Congress with

permission of Marina von Neumann Whitman.)

Los Alamos Bets on ENIAC: Nuclear Monte Carlo Simulations, 1947–1948

50 IEEE Annals of the History of Computing

The design of the search went through a
number of revisions. The correct interval for
a neutron was found by comparing its veloc-
ity with the middle value in the table and
then performing a linear search through the
top or bottom half of the table, as appropri-
ate. This strategy can be seen in the initial
branching in the diagrams shown in Figure 4,
which in each case is followed by two simi-
larly structured loops. Originally, the address
m of the current position in the table was
used to control the loop, and the number of
the interval, k, was then calculated from this
in different ways, depending on how the
loop had terminated (boxes 10� 13). This
was soon changed, however, so that the inter-
val number itself was used to control the
loop, leading to a significant simplification in
the expression of the termination conditions.
These changes give a vivid impression of the
team gradually acquiring a feel for idiomatic
techniques of efficient programming in the
modern code paradigm.

The introduction of velocity intervals also
made it possible to simulate fission more real-
istically. In the initial plan the “daughter”
neutrons produced by fission all had the

same velocity. After velocity intervals were
introduced, a representative value known as
the “center of gravity” was stored for each
interval. This allowed different velocities to
be easily generated for daughter neutrons by
using a digit from the current random num-
ber to select a velocity interval.

Change 4: Census Times
The biggest change in scope from the initial
computing plan to the program initially exe-
cuted was the transition from following an
individual neutron until it experienced its
next “event” to managing a population of
neutrons over time. Translating the plan into
an ENIAC program made explicit, and parti-
ally automated, the work needed to manage
multiple neutrons over multiple cycles of
simulation. Code implementing the steps de-
fined in the original plan to process one neu-
tron for one event was wrapped in several
levels of loops involving both automatic and
manual processing steps.

The program was organized around the
notion of “census times.” This idea was intro-
duced by Richtmyer in his response to von
Neumann’s original computing plan, when

Figure 4. Three progressively more optimized versions of region B of the flow diagram, which finds a

neutron’s velocity interval. Image 1 is from von Neumann’s original flow diagram, and image 3 is from

the December 1947 diagram. Image 2 is an intermediate sketch.46 (Reproduced from the Library of

Congress with permission of Marina von Neumann Whitman.)

51July–September 2014

he observed that it would generate output
decks in which cards held snapshots of
neutrons at widely different points in time.
Richtmyer suggested as a “remedy for this
difficulty” to

follow the chains for a definite time rather
than for a definite number of cycles of opera-
tion. After each cycle, all cards having t[ime]
greater than some preassigned value would be
discarded, and the next cycle of calculation
performed with those remaining. This would
be repeated until the number of cards in the
deck diminishes to zero.47

These preassigned values were dubbed
“census times.” A statistically valid picture of
the overall neutron population at these points
would then be produced, just as governments
make measurements of the characteristics of
their national populations at certain periodic
dates. The census concept was widely adopted
for Monte Carlo simulations.48

Change 5: Simulating Multiple Events Per Cycle
According to the original computing plan,
each cycle of computation would track the
progress of a neutron only as far as its next
event (scattering, zonal escape, total escape,
absorption, or fission). One or more new
cards representing the consequences of the
event would then be produced. The addi-
tional logical complexity afforded by the new
programming mode made it possible for
ENIAC to simulate more than one event in a
neutron’s career before printing a new card
for it. If a neutron was scattered or moved
into a new zone but had not yet reached the
census time, the program branched back to
an earlier region to follow its progress further
rather than producing an output card imme-
diately. This increased the complexity of the
program but reduced the amount of manual
card processing required.

Figure 5 gives an overview of how all this
worked in practice. The initial stack of neu-
tron cards was read one at a time from the
input hopper. After reading each card, ENIAC
punched one or more output cards. If a neu-
tron reached the current census time without
incident, it was followed no further for the
moment and ENIAC output a “census” card
with its updated information. If a neutron was
absorbed or experienced total escape, then its
career as a free neutron within the simulation
was over, but a card identifying the nature
of the terminal event was nevertheless out-
put for analytical processes. Likewise, when

a neutron triggered fission, a terminal card
for that neutron was produced specifying
that fission had taken place, including a
“weight” field to indicate the number of
daughter neutrons set free.

ENIAC’s operators would then use a suit-
ably configured sorting machine to separate
the output deck into three trays. One tray
accumulated cards representing neutrons
that did not need to be processed again
because they had terminated their simulated
career after escaping or being absorbed.
Another tray accumulated census cards repre-
senting neutrons that had reached the cur-
rent census time without incident.

The third tray held the cards representing
simulated fission events. Because these fis-
sions had taken place before the end of the
current census period, the cards were carried
over to ENIAC’s input hopper for further
processing.49 The data on this card was read
once, but ENIAC processed it repeatedly to
simulate each daughter neutron generated by
the fission. The careers of these daughter neu-
trons were followed as normal, with one card
being punched for each when a terminal
event was reached. These output cards were
sorted again, in case any further fissions had
occurred, and the process repeated until
ENIAC’s output deck included no fission
cards, indicating that each neutron had been
followed up to the census time.

At this point, the target census time could
be incremented and the simulation could
move on to the next census period. The pile
of census cards, representing neutrons that
were still active at the end of the previous
period, provided the new input deck. How-
ever, it needed additional manual processing
before use. The team had decided to start
each census period with the same number of
neutrons, even though the number of neu-
trons careening around inside a bomb tends
to rise or fall precipitously after its detonator
is triggered. A larger neutron sample popula-
tion increased statistical confidence in the
results of the simulation but increased the
time, work, and pile of punched cards needed
to run it. A smaller neutron sample popula-
tion could be processed more quickly but its
behavior would be less likely to track the
larger system being simulated. Thus, allowing
the neutron sample size to grow or shrink in
proportion to the simulated population
would sacrifice either accuracy or practicality.
Cards from the deck were therefore manually
duplicated or discarded to create a new input
deck of 100 cards.

Los Alamos Bets on ENIAC: Nuclear Monte Carlo Simulations, 1947–1948

52 IEEE Annals of the History of Computing

All the cards punched during the com-
putation were retained. These could be ana-
lyzed to show the distribution of neutrons
and fissions in time and space, something
Richtmyer had mentioned as desirable. They
would also reveal trends in neutron velocity,
the relative frequency of events such as

escape or fission at that instant, and the rate
at which the population of free neutrons was
increasing or decreasing. Tracking the latter
would allow Los Alamos to estimate the over-
all size of the free neutron population at each
point in the simulation (something that
ENIAC did not itself track).

Figure 5. Simulating multiple events per cycle. The shaded region shows the structure of the “First

Run” Monte Carlo program, including program regions. The unshaded region shows the card

operations required outside ENIAC.

53July–September 2014

Making the First Run, April–May 1948
The three main sets of Monte Carlo chain
reactions carried out for Los Alamos in 1948
and 1949 were referred to by the von Neu-
manns as the “first run,” “second run,” and
“third run.” Within each run a different
evolution of the program code was used to
investigate a number of “problems,” each
simulating a different physical configuration.
The term “run” may echo the idea, later ubiq-
uitous, of “running” a program or may refer
instead to the physical movement of people
and materials to Aberdeen and back—in the
sense of a “bombing run” or “school run.”
The term “expedition” was also used by John
von Neumann to refer to these trips and to
later trips made to Aberdeen to experiment
with numerical weather predictions.50 It is a
striking term, capturing a world in which
computers were scarce and exotic things by
evoking the scientific tradition of mounting
long, arduous, and painstakingly planned
field expeditions to observe eclipses, uncover
buried cities, or explore the polar regions.
Explorers returned with knowledge that
could never be obtained at home. Using
ENIAC was an adventure, a journey to an
unfamiliar place, and often something of an
ordeal.

Anne Fitzpatrick, who wrote with access
to internal Los Alamos progress reports and
other classified documents, concluded that
all ENIAC Monte Carlo work done for Los
Alamos in 1948 and 1949 was focused on fis-
sion weapons, rather than relating directly to
the fusion-powered hydrogen bomb. The ini-
tial set of seven calculations in spring 1948
were “primarily for the purpose of checking
techniques, and according to Metropolis, did
not attempt to solve any type of weapons
problem.” It is, however, clear that Los Ala-
mos viewed the work on ENIAC as crucial to
its own progress with new weapons designs.
Fitzpatrick continues,

Throughout March and April Carson Mark
[director of the lab’s Theoretical Division] com-
plained in his monthly reports about the
delays encumbered (sic.) by the fission
program because of the slow pace of the
ENIAC’s conversion and “mechanical con-
dition.” The whole point of having fission
problems run on ENIAC in the first place, Mark
noted, was to speed up T Division’s work by
“mechanization” of calculations.51

Even a man as well connected as John von
Neumann could not simply show up at the
Ballistic Research Laboratory in Aberdeen

and ask his friends for the keys to ENIAC.
There were bureaucratic niceties to follow
and a chain of command to respect. On 6
February 1948, he wrote to Norris Bradbury,
director of Los Alamos, asking him to make a
formal request for time on the ENIAC. Politi-
cal as ever, von Neumann reminded Bradbury
to “mention in your letter how much you
appreciate all the courtesies that have been
extended to your staff by the BRL and how
extremely important the ENIAC is to your
work, etc. This will greatly help Colonel
Simon politically and will also be good for our
future relations with the BRL.”52

The terms had already been worked out
informally with Simon and his subordinates,
with delays imposed by the arrival of ceiling
contractors, testing, and the delayed installa-
tion of new hardware.53 Bradbury sent the
necessary official request, flattery included,
to the Office of Chief of Ordnance. On 13
March 1948, von Neumann wrote to Carson
Mark, leader of the Theoretical Division at
Los Alamos, that “The Monte Carlo problem
is set up and ready to go.”54

The von Neumanns visited Aberdeen on 8
April 1948, and Klara remained behind for
the next month to work with Metropolis,
who had by then completed initial reconfigu-
ration of ENIAC to support the modern code
paradigm. The first successful “production
run” made on Monte Carlo took place on 17
April 1948. However, the machine was still
plagued by “troubles” and the calculation did
not begin in earnest until 28 April.55 Progress
seems to have been slowed far more by hard-
ware glitches than program bugs, which is
interesting given that nobody had previously
debugged a program written in the modern
code paradigm. This is a tribute to the care
with which the program had been planned,
the depth of thought the Princeton group
had given to the new programming style,
and perhaps also to ENIAC’s relative friendli-
ness to debugging.

We have not located the program code for
the first run. However, triangulating from
several sources gives a reliable sense of how
this first Monte Carlo worked. First, we have
the series of flow diagrams discussed previ-
ously. Second, we have the revised program
code used for the second run in late 1948.
Third, we have a lengthy archival document,
“Actual Running of the Monte Carlo Prob-
lems on the ENIAC,” which describes the
programming techniques used in both
versions. This explicitly highlights changes
made between the two runs. Fourth, the draft

Los Alamos Bets on ENIAC: Nuclear Monte Carlo Simulations, 1947–1948

54 IEEE Annals of the History of Computing

flow diagrams for the second run are in many
regions identical to the first run diagram.
Finally, archival materials for the first run
document the allocation of data to the
ENIAC’s accumulators, the layout of constant
data on the third function table, the card for-
mat used, and the associated use of the con-
stant transmitter.56

The calculations performed during the
first run simulated seven different situations,
each represented by changing some of the
data stored on the third function table. As
Richtmyer wrote,

Certain experimentally determined nuclear
data are obviously needed. One must know the
so-called macroscopic cross-sections, that is,
the probabilities, per unit distance travelled, of
the various processes (absorption, elastic scat-
tering, inelastic scattering) in each medium,
as a function of the neutron’s velocity. For
scattering, one must know the angular distri-
bution, that is, the relative probabilities of vari-
ous angles of scattering; for inelastic scattering
one must also know the energy distribution of
the scattered neutrons; and, for fission, one
must know the average number and energy
distribution of the emitted neutrons.57

This data was the most militarily sensitive
part of the entire operation. Documents
retained in the archives record in triplicate
the receipt of classified material by Klara von
Neumann on various occasions, sometimes
(as with “cross section data” on 16 January
1947) from her husband.58

Our companion article “Engineering ‘The
Miracle of ENIAC’”3 discusses several draft
instruction sets created for ENIAC during the
planning process. For the first run program,
ENIAC was set up to implement a code
providing 79 instructions.59 This would not
have required major changes to draft pro-
grams targeting the “60 order code.” Beyond
updating the numerical codes corresponding
to the instruction mnemonics, a simple mat-
ter of substitution, the main challenge would
have been restructuring shift instructions as
these were handled quite differently in the
new instruction set.

By 10 May 1948 it was all over. John von
Neumann wrote on 11 May to Ulam that
“ENIAC ran for 10 days. It was producing
50% of these 10x16 hours, this includes two
Sundays and all troubles…. It did 160 cycles
(’censuses,’ 100 input cards each) on 7 prob-
lems. All interesting ones are stationary at the
end of this period. The results are very prom-
ising and the method is clearly a 100%

success.”60 Three days later, he added that
“There is now a total output of over 20,000
cards. We have started to analyze them, but
… it will take some doing to interpret it.”61

Klara von Neumann documented the
techniques used in a manuscript cryptically
headed “III: Actual Technique—The Use of
the ENIAC.”62 This began with a discussion
of the conversion of ENIAC to support the
new code paradigm, documented the data
format used on the punched cards, and out-
lined in reasonable detail the overall struc-
ture of the computation and the operations
performed at each stage.

Second Run, October–November 1948
Klara von Neumann returned to Aberdeen on
18 October 1948 to perform a second run of
Monte Carlo calculations and was joined by
Metropolis two days later. Production work
began on 22 October. On 4 November, John
von Neumann wrote to Ulam that “[t]hings
at Aberdeen have gone very well. The present
segment of the Monte Carlo program is likely
to be completed at the end of this week or
early next week.”63 According to Fitzpatrick,
this second series of problems “constituted
actual weapons calculations” including “an
investigation of the alpha for UH3, a
‘hydride’ core implosion configuration” and
“a supercritical configuration known as the
Zebra.”64

Changes between the first and second ver-
sions of the Monte Carlo program were
described in some detail in the report “Actual
Running of the Monte Carlo Problems on the
ENIAC.” An expanded and updated version
of the earlier “Actual Technique” report, this
was written by Klara von Neumann and
edited in collaboration with Metropolis and
John von Neumann during September 1949.
It contains a detailed description of the com-
putations, highlighting the changes in the
flow diagram, program code, and manual
procedures between the two versions.65

The physical model used and the cal-
culations performed to follow the paths of
individual neutrons were little changed.
Modifications were made to representations
of the zones of different materials and of the
zonal escape of neutrons. Most changes were
operational optimizations. For example,
some early sections of the program were reor-
dered to marginally increase overall effi-
ciency, and collision cross-section ratios were
precomputed and stored on the function
table to avoid recalculating them when
needed.

55July–September 2014

The most important change was to further
increase the share of the overall Monte Carlo
procedure being automated by ENIAC. Dur-
ing the first run, ENIAC finished processing a
neutron when its path had been followed to
the next census time. When a neutron
reached a census time, its data was punched
onto a card, which was then sorted into a sep-
arate pile. Only after all the fissions that
occurred during that census time had been
processed was the card read back in and the
next period in the neutron’s life simulated.
Processing the entire neutron population for
one census period before proceeding to the
next allowed von Neumann and Metropolis
to intervene after each census time to adjust
the population size, but it also introduced
considerable inefficiency. Sorting work was
needed every time a deck of cards was fed
through ENIAC, and the deck was examined
and modified manually when processing for
each census period was completed.

The second run eliminated both kinds of
manual processing by including “in the logi-
cal sequence and coding of the program, an
automatic way of handling the beginning
and ending of a time cycle.”66 “No attempt
was made to keep the input stack at a fixed
number,” according to Klara von Neumann’s
report. Indeed, each surviving neutron at the
end of a census period gave rise to two neu-
trons in the next period to ensure that the
sample population expanded even if the
simulated population was falling.67

As before, reading a fission or census card
would further progress the life history of the
neutron(s) described on the card. It was no
longer necessary, however, to process all the
neutrons produced by fission during a census
interval before rebalancing the deck and pro-
ceeding to the next interval. There was thus
no need to separate fission and census cards
from each other, or from other card types.
Each deck of cards punched by ENIAC could
be transferred immediately to its input hop-
per for further processing.68

Total escape, absorption, or fission still
ended a free neutron’s career. The handling
of zonal escape changed to limit the amount
of time spent processing neutrons that were
scattered in the large outer zone of tamper
material found in several second run prob-
lems. Each time a neutron escaped from one
zone to another in the second run, a card was
punched and the computation continued
with the next neutron, whereas in the first
run these “zonal escapes” had not been
logged. To make sorting easier at Los Alamos,

each card was punched with the number of
the census interval it represented.

The new operating procedures distin-
guished between subcritical and near- or
super-critical reactions. For subcritical sys-
tems, the original cards were given start times
spread over the course of the simulation to
increase the proportion still active at its con-
clusion. The new flow diagram contained two
separate card read sequences, and the appro-
priate one was selected by modifying a single
address on the function table before the com-
putation was started. This technique was also
used to control certain aspects of the process-
ing of zonal escape and to include special
code sections needed for particular problems.

ENIAC finished processing this series of
problems by 7 November 1949. On 18 No-
vember, John von Neumann wrote that “The
whole second Monte Carlo seems to have
been successful. The ENIAC functioned mar-
velously. About 105 cards were produced in
three weeks, and while the material hasn’t
been analyzed as yet, there is reason to hope
that it contains a considerable amount of val-
ued and useful information.”69

We uncovered two flow diagrams describ-
ing this run, along with a complete code list-
ing that very closely matches one of them.70

The two diagrams exhibit similar levels of for-
mality suggesting that a stable usage of the
flow diagram methodology was emerging
with experience.

The code listing, in Klara von Neumann’s
handwriting, covers 28 pages (see Figure 6). It
is broken up into sequentially numbered six-
line sections. In many sections annotations
provide a simulated trace of the progress of
the program, using typical data values to
check the effect of the orders.

The program was faithful to the flow dia-
grams’ novel features, such as calling the
subroutine from two places in the code and
storing the appropriate return address, and
reflected its structure of regions with fairly
disciplined entry and exit points. Its main
sequence filled rows –2, –1, and 12–99 of the
first function table and rows –2 to 96 of the
second function table. With four of these
rows blank, this accounted for approxi-
mately 2,208 digits of program code, repre-
senting about 840 instructions.71 The first
run was of similar complexity—some aspects
were simplified for the second run, but this
was balanced by the addition of some new
data fields and automation of some tasks
that required manual card sorting in the ini-
tial version.

Los Alamos Bets on ENIAC: Nuclear Monte Carlo Simulations, 1947–1948

56 IEEE Annals of the History of Computing

The code for the second run included a
number of variant paths and sections and
could be configured for a specific problem
by manually setting a handful of transfer
addresses within instructions on the function
tables before execution was started. The most
significant of these is a section of code dealing
with the elastic scattering of neutrons in “light
materials.” This reflected interest at Los Ala-
mos in the use of uranium hydride cores. The
hydrogen separates from the uranium, acting
as a moderator to slow neutrons and reduce
the critical mass of uranium needed to build a
weapon. Edward Teller believed, wrongly as it
turned out, that the inevitable reduction in
explosive yield would be more than offset by
of the opportunity to build more bombs from
scarce weapons-grade uranium.72

Klara von Neumann left for Los Alamos
around 1 December, presumably to help inter-
pret the second run results and to lay the
groundwork for future calculations. A letter
from her husband, who arrived some weeks
later, expressed “dense confusion” after what
seemed to be some kind of argument triggered
by a crisis of confidence on her part as she pre-
pared to provide “proof of [her] intellectual
independence” via this solo trip.73 Even some-
one blessed with ample self-confidence and
robust mental health would feel somewhat
daunted at the prospect of defending one’s
mathematical technique to Ulam, Teller, and
Enrico Fermi (the latter already a Nobel Prize
winner). On 13 December, John wrote to her
at Los Alamos to admit himself “scared out of
my wits” after finding her “catastrophically
depressed” during a phone call and worrying
that the stress would leave her ruined
“physically and emotionally.” Seeking inde-
pendence within the shadow of John von
Neumann only added to the challenges facing
Klara, despite his fervent attempts to allay her
worries about her loss of youth (“your prob-
lems and dispositions are perennial, and age is
the least of your troubles”), intelligence (“a
bright girl”) and flawed character (“and a very
nice one”).74

Her worries could only have been com-
pounded when an error was discovered in the
hydride calculations. Ulam wrote to John von
Neumann on 7 February that “It seems that
our electronic computation is wrong in the
Problem No. 4—Nick found out which it was.
The problem has to be repeated.”75 Carson
Mark complained in his regular Theory Divi-
sion progress report that it was “evident that
the ENIAC has not advanced beyond an exper-
imental stage in doing serious computation

for this project.”76 These gripes did not deter
further use of ENIAC or slow Monte Carlo’s
rapid enshrinement as an indispensable tool
for nuclear science. ENIAC and Klara von Neu-
mann hosted at least three further Monte
Carlo expeditions by the staff of Los Alamos
and Argonne labs during 1949 and 1950 before
more powerful computers became available
for their use.

Conclusions
John von Neumann’s contribution to the
development of modern computing is well
known, and the roles of some of his collabora-
tors such as Herman Goldstine and Arthur
Burks are also well documented. Our investi-
gation has shed new light on the importance

Figure 6. Detail from page 7 of the second run

program code, showing 13 of the 840

instructions in the program. Numbers 65–68

show positions on the function tables, and

annotations in the left margin refer back to the

corresponding boxes on the flow diagram. Each

row gives the two decimal digits entered on the

function table, and when those numbers code an

operation rather than a data field, the

corresponding mnemonic such as 3l or N3D8.

Some corrections have been made in red pencil,

and blocks 65 and 66 of code have been erased

and substituted for each other. (Reproduced

from the Library of Congress with permission of

Marina von Neumann Whitman.)

57July–September 2014

of work done by some of his other collabora-
tors, most notably his wife Klara. Her central
contribution to the Monte Carlo work
has, with the exception of previously cited
comments by Nick Metropolis and recent
coverage by George Dyson, barely been men-
tioned.77 The story told here fits, in its broad
outline, with Galison’s famous depiction of
the first Monte Carlo simulations as a trading
zone, yet stepping down from his lofty perch
to look more closely at the details of the com-
putations deepens our understanding of what
is being traded and by whom.

According to Galison, Monte Carlo led
physics to a “netherland that was at once
nowhere and everywhere.”78 This description
of its intellectual legacy also describes its
unconventional social structure, creating
opportunities in the shadows. The practice of
Monte Carlo engaged not only the great men
populating his story, who were diverse in
their disciplinary backgrounds, but a broader
cast of characters. In particular, Klara von
Neumann, mentioned by Galison only as
one of a list of early female computer pro-
grammers, emerges as a surprisingly central
participant in these exchanges. Entering the
trading zone with no scientific credentials,
carrying little more than her natural talent
and some social capital borrowed from her
husband, she was soon running a successful
stall of her own.

The ENIAC Monte Carlo simulations exe-
cuted from spring 1948 onward stand out
among the programs executed during the
1940s for their complexity and the fidelity of
their diagramming and coding style to the
ideas of John von Neumann and his circle of
collaborators. Our analysis illuminates the
evolution of the program over a two-year
period from an initial computing plan,
through a series of flow diagrams to an initial
ENIAC program and onward through a major
cycle of revision and improvement. This
gives a uniquely detailed and richly substan-
tiated look at a landmark program.

The program challenges some generaliza-
tions about scientific computing. We tend to
think of the speed and practical scope of early
scientific computer problems as governed
largely by computation speed and memory
requirements with minimal requirements for
input and modest output needs, in contrast
with administrative data processing jobs
where throughout depended on the speed at
which data could be pushed in and out of the
machine from card or tape units. ENIAC’s
original task of calculating trajectory tables

certainly fits this model, as do the celebrated
“first programs” run on the Manchester Baby
and EDSAC (both of which performed long
series of calculations with no data input and
a tiny output consisting of solutions).79 In
contrast, the first program run on ENIAC
after its conversion to the new code paradigm
was a complex simulation system that might
take days to complete its tasks, depending
primarily on the speed at which data could
be fed through the machine.

The program included a number of key fea-
tures of the modern code paradigm. It was
composed of instructions written using a
small number of operation codes, some of
which were followed by additional argu-
ments. Conditional and unconditional jumps
were used to transfer control between differ-
ent parts of the program. Instructions and
data shared a single address space, and loops
were combined with index variables to iterate
through values stored in tables. A subroutine
was called from more than one point in the
program, with the return address stored and
used to jump back to the appropriate place on
completion. Whereas earlier programs, such
as those run on the Harvard Mark I, were writ-
ten as a series of instructions and coded
numerically, this was the first program ever
executed to incorporate these other key fea-
tures of the modern code paradigm.

Acknowledgments

This project was generously funded by Mrs.

L.D. Rope’s Second Charitable Settlement.

Thanks to archivists Susan Dayall at Hamp-

shire College, Lynn Catanese at the Hagley

Museum and Library, Susan Hoffman at the

Charles Babbage Institute, Valerie-Ann Lutz

and the other archival staff at the American

Philosophical Society, and the staff of the

Library of Congress Manuscripts Reading

Room. Nate Wiewora, Alan Olley, and Peter

Sachs Collopy provided us with copies of

documents. George Dyson and Marina von

Neumann Whitman both shared unpub-

lished material with us from the latter’s per-

sonal collection of papers concerning Klara

von Neumann. Susan Abbey provided hand-

writing analysis services to clarify the

authorship of numerous documents. Anne

Fitzpatrick, Steve Aftergood, Robert Seidel, J.

Arthur Freed, and Alan B. Carr all did what

they could to help us navigate the maze of

restrictions surrounding access to historical

Los Alamos Bets on ENIAC: Nuclear Monte Carlo Simulations, 1947–1948

58 IEEE Annals of the History of Computing

materials from Los Alamos. William Aspray,

Jeff Yost, Atsushi Akera, Paul Ceruzzi, and

Martin Campbell-Kelly kindly answered our

questions on specific topics and shared their

perspectives on computing in the 1940s. We

also benefitted from suggestions made by

the Annals reviewers and by those who dis-

cussed the draft at the informal Workshop

on Early Programming Practice, organized

by Gerard Alberts and Liesbeth De Mol.

References and Notes

1. J. von Neumann, “First Draft of a Report on the

EDVAC,” IEEE Annals of the History of Computing,

vol. 15, no. 4, 1993, pp. 27–75.

2. T. Haigh, M. Priestley, and C. Rope,

“Reconsidering the Stored Program Concept,”

IEEE Annals of the History of Computing, vol. 36,

no. 1, 2014, pp. 4–17.

3. T. Haigh, M. Priestley, and C. Rope,

“Engineering ‘The Miracle of the ENIAC’: Imple-

menting the Modern Code Paradigm,” IEEE

Annals of the History of Computing, vol. 36, no. 2,

2014, pp. 41–59.

4. An overview of perspectives on the history of

software toward the beginning of this period is

given in U. Hashagen, R. Keil-Slawik, and

A.L. Norberg, eds., Mapping the History of

Computing: Software Issues, Springer-Verlag,

2002.

5. Changes in the focus of software history over

time are explored in M. Campbell-Kelly, “The

History of the History of Software,” IEEE Annals

of the History of Computing, vol. 29, no. 4, 2007,

pp. 40–51.Recent contributions include M.

Campbell-Kelly, From Airline Reservations to Sonic

the Hedgehog: A History of the Software Industry,

MIT Press, 2003; T. Haigh, “How Data Got Its

Base: Information Storage Software in the 1950s

and 1960s,” IEEE Annals of the History of Comput-

ing, vol. 31, no. 4, 2009, pp. 6–25; M. Priestley,

A Science of Operations: Machines, Logic, and the

Invention of Programming, Springer, 2011.Our

specific topic, the programming of ENIAC, has

recently been explored in B.J. Shelburne, “The

ENIAC’s 1949 Determination of p,” IEEE Annals

of the History of Computing, vol. 34, no. 3, 2012,

pp. 44–54; and M. Bullynck and L. De Mol,

“Setting-Up Early Computer Programs: D.H.

Lehmer’s ENIAC Computation,” Archive for

Mathematical Logic, vol. 49, no. 2, 2010,

pp. 123–146.

6. See, for example, the perspectives gathered in

N. Oudshoorn and T. Pinch, eds., How Users

Matter: The Co-Construction of Users and Technol-

ogy, MIT Press, 2003.

7. P. Galison, “Computer Simulation and the Trad-

ing Zone,” The Disunity of Science: Boundaries,

Contexts, and Power, P. Galison and D.J. Stump,

eds., Stanford Univ. Press, 1996, p. 119.

8. Galison, “Computer Simulation and the Trading

Zone,” p. 120.

9. M.S. Mahoney, “Software as Science—Science

as Software,” Mapping the History of Comput-

ing: Software Issues, U. Hashagen, R. Keil-Sla-

wik, and A.L. Norberg, eds., Springer-Verlag,

2002, pp. 25–48. U. Hashagen, “The Computa-

tion of Nature, Or: Does the Computer Drive

Science and Technology?” The Nature of Com-

putation. Logic, Algorithms, Applications, P.

Bonizzoni, V. Brattka, and B. L€owe, eds., LNCS

7921, Springer-Verlag, 2013, pp. 263–270.

The philosophical status of early Monte Carlo

simulation was recently explored in a PhD the-

sis: I. Record, Knowing Instruments: Design, Reli-

ability, and Scientific Practice, History and

Philosophy of Science and Technology, Univ. of

Toronto, 2012.

10. The jump takes place at the bottom of page 130.

Pages 130–135 then discuss the application of

Monte Carlo methods to the Super, including

ENIAC calculations performed in 1950.

11. A. Fitzpatrick, “Igniting the Light Elements: The

Los Alamos Thermonuclear Weapon Project,

1942–1952 (LA-13577-T),” Los Alamos Nat’l

Lab., 1999.

12. D. MacKenzie, “The Influence of Los Alamos and

Livermore National Laboratories on the Devel-

opment of Supercomputing,” IEEE Annals of the

History of Computing, vol. 13, no. 2, 1991,

pp. 179–201.

13. W. Aspray, John von Neumann and the Origins of

Modern Computing, MIT Press, 1990.

14. The series of 1947–1948 reports on “Planning and

Coding Problems for an Electronic Computer” are

reproduced in W. Aspray and A.W. Burks, Papers of

John von Neumann on Computing and Computer

Theory, MIT Press, 1987, pp. 151–306.

15. S.M. Ulam, Adventures of a Mathematician,

Scribner, 1976, p. 148.

16. Fitzpatrick, “Igniting the Light Elements,”

p. 269.

17. Ulam, Adventures of a Mathematician,

pp. 196–201. Another first-hand account is

given in N. Metropolis, “The Beginning of the

Monte Carlo Method,” special issue, Los Alamos

Science, 1987. Several secondary treatments are

cited in subsequent notes.

18. Aspray, John von Neumann and the Origins of

Modern Computing, pp. 111, 288, footnote 50.

This public mention of Monte Carlo seems to

precede the well-known paper by von Neumann

and Ulam presented in September 1947 and

published as S.M. Ulam and J. Von Neumann,

59July–September 2014

“On Combination of Stochastic and Determinis-

tic Processes: Preliminary Report,” Bull. of the

Am. Mathematical Soc., vol. 53, no. 11, 1947,

p. 1120.

19. C.C. Hurd, “A Note on Early Monte Carlo

Computations and Scientific Meetings,”

Annals of the History of Computing, vol. 7, no.

2, 1985, pp. 141–155. The report repro-

duced there is the source for much subse-

quent discussion of the planned

computation, including Galison, “Computer

Simulation and the Trading Zone,”

pp. 129–130, and Record, Knowing Instru-

ments, pp. 137–141.

20. Richtmyer’s reply (also reprinted by Hurd in

his 1995 article) points out that the “slower-

down material” could be omitted for “systems

of interest to us [at Los Alamos]” (that is,

bombs). This suggestion was followed in the

first version of the program, although the

layer was eventually reintroduced to allow

simulation of bombs with uranium hydride

cores.

21. Von Neumann also proposed recording the cur-

rent zone number to save having to calculate

this based on the neutron’s position.

22. R.D. Richtmyer, “Monte Carlo Methods: Talk

Given at the American Mathematical Society, April

24, 1959,” p. 3. Stanislaw M. Ulam Papers, Am.

Philosophical Soc., series 15. (Further citations to

this collection are abbreviated SMU-APS.)

23. Hurd, “A Note on Early Monte Carlo

Computations and Scientific Meetings,”

p. 149.

24. These limitations are discussed further in

T. Haigh, M. Priestley, and C. Rope,

“Engineering ‘The Miracle of the ENIAC,’” p. 43.

25. Hurd, “A Note on Early Monte Carlo Computa-

tions and Scientific Meetings,” p. 152.

26. G. Dyson, Turing’s Cathedral: The Origins

of the Digital Universe, Pantheon Books, 2012,

p. 210.

27. J. von Neumann to Ulam, letter, 27 Mar.

1947, SMU-APS, series 1, John von Neumann

folder 2.

28. “I am hoping to hear very soon from the

‘Princeton Annex’ some word of the first

Monte Carlo.” C. Mark to J. von Neumann,

letter, 7 Mar. 1948, Papers of John von Neu-

mann, Manuscripts Division, US Library of

Congress, box 5, folder 13. (This collection is

cited hereafter as JvN-LOC).

29. Dyson, Turing’s Cathedral, pp. 175–189, focuses

on Klara von Neumann, as does M.v.N. Whitman,

The Martian’s Daughter: A Memoir, Univ. of

Michigan Press, 2012, pp. 22–23, 38–39, 48–54.

30. A letter dated 28 Aug. 1947 from A.W. Kelley to

Richtmyer confirms that the “necessary

approvals have been obtained” for her employ-

ment by Los Alamos. JvN-LOC box 19, folder 7.

However, her informal involvement seems to

have preceded this.

31. K. von Neumann, “Grasshopper in the Very Tall

Grass,” memoir (n.d.), Papers of Marina von

Neumann Whitman, 1946–2013, Schlesinger

Library, Radcliffe Inst. for Advanced Study, Har-

vard University. Transcription by M. von Neu-

mann Whitman.

32. Dyson, Turing’s Cathedral, p. 188.

33. These quotations are taken from Klara von Neu-

mann’s “Grasshopper in Very Tall Grass.”.

34. W. Aspray and A. Bucks, “Computer Program-

ming and Flow Diagrams: Introduction,” Papers

of John von Neumann on Computing and Com-

puter Theory, W. Aspray and A. Bucks, ed., MIT

Press, 1987, pp. 145–150.

35. The best developed version of the first run

flow diagram measured approximately 24

inches by 18 inches and is neatly written in

the hand of Adele Goldstine with the head-

ing “MONTE CARLO Flow Diagram 12/9/

47,” JvN-LOC, box 11, folder 7. (There are

two copies, one a negative.) A copy with

two later handwritten annotations is in the

Herman H. Goldstine Collection, 1941–1971

Archives, Hampshire College (hereafter cited

as HHG-HCA). This diagram is available

online from our project website www.EniacI-

nAction.com as is a technical report by

M. Priestley and T. Haigh, “Monte Carlo

Computation Analysis,” charting in more

detail the evolution of planning for the

computation.

36. Ten manuscript pages numbered I, II.a–II.g,

III, and IV, in JvN-LOC, box 11, folder 8. An

undated manuscript page on squared paper

in JvN-LOC box 11, folder 8, contains a plan

of ENIAC’s three function tables, labeled “FT

I,” “FT II,” and “FT III,” and shows that all

three tables could be used for the storage of

program instructions or numeric data. Com-

mon practice, followed in the Monte Carlo

programs, was to use two tables to store the

program code and the third, referred to as

the “numeric function table,” to hold data

describing a particular physical situation. This

strategy preserved the separation of the

setup of the Monte Carlo procedure itself

from what von Neumann referred to in his

original letter to Richtmyer as “numerical

constants” describing a particular “criticality

problem.” (Hurd, “A Note on Early Monte

Carlo Computations and Scientific Meetings,”

p. 149).

37. Undated manuscript page headed “Refresh Ran-

dom No.,” JvN-LOC, box 11, folder 8. J. von

Los Alamos Bets on ENIAC: Nuclear Monte Carlo Simulations, 1947–1948

60 IEEE Annals of the History of Computing

Neumann was working personally on the meth-

ods for the generation of random numbers, so

this might well have been written before or sep-

arately from the rest of the program.

38. Seven undated manuscript pages numbered 0

to 6 and a single page headed “Shifts” in JvN-

LOC, box 11, folder 8. The structure of the

overview flow diagram on page 0 is reproduced

in the shaded area of Figure 5. Additional dia-

grams on pages 1–3 represented the operation

boxes and the connections between them in

each of the 12 regions. Pages 4–6 contained

detailed timing estimates for each box and

region.

39. Three storage tables can be seen in Figure 1, one

attached by a dashed line to the line between

boxes 1* and 1.2* and e.g. one to the right of

box 7*.

40. Von Neumann talks about the “square and take

the middle digits” approach to generating pseu-

dorandom numbers, and testing the resulting

distribution, in letters to A.S. Householder (3

Feb. 1948) and C.C. Hurd (3 Dec. 1948), J. von

Neumann, Selected Letters, M. R�edei, ed., Am.

Mathematical Soc., 2005, pp. 141–142,

144–145.

41. This was another minor optimization: two of the

four points at which new numbers had been

generated were, by late 1947, modified to make

use instead of particular digits within the num-

ber already generated.

42. The idea of a subroutine was familiar within the

ENIAC team as early as 1945: “It is possible to

have the main routine divided into sub-routines,

in which case one stepper is used to feed another

stepper, thus allowing the proper sub-routine to

be chosen in the course of a regular routine.” J.P.

Eckert, J.W. Mauchly, H.H. Goldstine, and J.G.

Brainerd, Description of the ENIAC and Com-

ments on Electronic Digital Machines, AMP

Report 171.2R, distributed by the Applied

Mathematics Panel, Nat’l Defense Research

Committee, 30 Nov., Moore School of Electri-

cal Eng., 1945, pp. 3–7. This predates the ear-

liest use of the term recorded in the Oxford

English Dictionary, which documents a usage by

J. von Neumann in 1946.

43. M. Campbell-Kelly, “Programming the EDSAC:

Early Programming Activity at the University

of Cambridge,” Annals of the History of Comput-

ing, vol. 2, no. 1, 1980, pp. 7–36, 17.

Campbell-Kelly attributes the terminology used

for the two types of subroutine to Douglas

Hartree.

44. To give credit to Wheeler, who has been cred-

ited as the inventor of the closed subroutine,

the Monte Carlo programs used a simple

method to process the return address and

relied on global variables as parameters and

arguments. Campbell-Kelly shows that EDSAC

practice soon moved beyond these particular

mechanisms. Also, ENIAC’s use of function

table memory eliminated the possibility of

automatically relocating subroutines from a

library, which was a major focus of early work

on subroutines both by Goldstine and von Neu-

mann (in the final installment of the “Planning

and Coding” reports cited earlier) and by the

EDSAC team. The loss of this particular “first”

takes little away from the substance of Wheel-

er’s innovations.

45. The original simple sequence of operation box

numbers was confused by alterations to the

original diagram. Small insertions were placed in

new boxes with decimal numbers, such as

20.1*. More radical changes led to new number-

ing sequences distinguished by overlining, or

the use of the � symbol. For the second run, the

boxes were renumbered sequentially, with each

functional region being allocated a block of 10

numbers. As before, though, modifications soon

led to the introduction of a variety of ad hoc

symbols.

46. Undated page containing handwritten flow

diagram with nine boxes, JvN-LOC, box 11,

folder 8.

47. Hurd, “A Note on Early Monte Carlo Computa-

tions and Scientific Meetings,” p. 155.

48. For a comparison of alternative techniques of

census taking, see E. Fermi and R.D. Richtmyer,

“Note on Census-Taking in Monte-Carlo Calcu-

lations,” LAMS-805, series A, Los Alamos Nat’l

Lab., 11 July 1948.

49. You might wonder why ENIAC could not simply

start processing the first generation of daughter

neutrons immediately, rather than waiting for

the card it had just written to be fed back into its

input hopper. The answer is subtle. After reading

a card, ENIAC could process the data several

times because it was cached in the relay mem-

ory of the constant transmitter. This meant that

even after the initial neutron data had been

modified while tracing the progress of the first

daughter neutron, it could be retrieved from the

constant transmitter without needing to read

the card again. No other operation, including

writing a card, could modify the contents of this

relay memory.

50. For example, he wrote, “Klari survived the Aber-

deen expedition this time better than the last

one,” letter to Ulam, 18 Nov. 1948, JvN-LOC,

box 7, folder 7. The term seems to have been in

common use in the von Neumanns’ circle. Car-

son Mark also referred to a series of “rather

major calculation expeditions” from Los Alamos

to ENIAC in his testimony during the 1971

61July–September 2014

ENIAC patent trial (“Testimony: September 8,

1971,” Honeywell vs. Sperry Rand, vol. 48, p.

7504, ENIAC Patent Trial Collection, Univ. of

Pennsylvania Archives and Records Center UPD

8.10). A meteorologist who worked with von

Neumann also wrote later of “ENIAC

expeditions,” the first of which was a

“remarkable exploit” that “continued 24 hours

a day for 33 days and nights.” G.W. Platzman,

“The ENIAC Computations of 1950—Gateway

to Numerical Weather Prediction,” Bull. Am.

Meteorological Soc., vol. 60, no. 4, 1979,

pp. 302–312, quotations pp. 303, 307.

51. Fitzpatrick, “Igniting the Light Elements,”

p. 268.

52. J. von Neumann to Bradbury, letter, 6 Feb.

1948. Herman H. Goldstine Papers, American

Philosophical Society, Philadelphia (hereafter

cited as HHG-APS) series 1, box 3.

53. J. von Neumann to Simon, letter, 5 Feb. 1948,

HHG-APS, series 1, box 3. Simon to J. von Neu-

mann, letter, 9 Feb. 1948, JvN-LOC box 12,

folder 3.

54. J. von Neumann to Mark, letter, 13 Mar. 1948,

JvN-LOC, box 5, folder 13.

55. “ENIAC Operations Log (After November 21,

1947),” Sperry-UNIVAC Company Records,

Hagley Museum and Library.

56. The use of certain accumulators for the tempo-

rary storage of variables, the usage of the vari-

ous digits of the random number n, the layout

of the numeric function table and the constant

transmitter registers, and a few numeric con-

stants are listed on four undated manuscript

pages on squared note paper in JvN-LOC box

11, folder 8. The punched card layout is

described on the December 1947 flow

diagram.

57. Richtmyer, “Monte Carlo Methods,” p. 4.

58. “Receipt of Classified Materials,” 16 Jan. 1948,

JvN-LOC, box 19, folder 7. In case anyone con-

cerned with national security is reading, we

should make it clear that the accessible archival

documents do not include these physical

constants.

59. “ENIAC Operations Log,” entries for 1 and 2

Apr. 1948.

60. J. von Neumann to Ulam, letter, 11 May 1948,

SMU-APS, series 1, John von Neumann folder 2.

61. J. von Neumann to Ulam, letter, 14 May 1948,

SMU-APS, series 1, John von Neumann folder 2.

62. JvN-LOC, box 12, folder 6, contains a 17-page

full manuscript of “Actual Technique” and a

typewritten transcription of the manuscript with

insertions and corrections by John von Neu-

mann numbered�1 to�83 noted in the right

margin. Eight larger passages of handwritten

text on separate sheets are marked for insertion

at various points. A five-page manuscript with

the same title is in fact an incomplete later draft.

This document evolved into the “Actual Run-

ning of the Monte Carlo Problems on the Eniac”

discussed later.

63. J. Von Neumann to Ulam, letter, 4 Nov. 1948,

SMU-APS, series 1, J. von Neumann folder 2.

64. Fitzpatrick, “Igniting the Light Elements,”

pp. 269.

65. Three drafts of the “Actual Running…” report

are held in JvN-LOC, box 12, folder 6. These are

a manuscript in the hand of Klara von Neumann

and two typed versions of the same text. One

typescript has been annotated and corrected all

the way through, primarily by Klara von Neu-

mann. Metropolis later wrote to Klara, “Here is

your manuscript together with a rough type-

written copy … The flow diagrams will definitely

be finished on Monday and will be sent to you

on that day.” (N. Metropolis to K. von Neu-

mann, letter, 23 Sept. 1949. JvN-LOC, box 19,

folder 7.) A transcription of the report with all

marked corrections made is available from our

project website, www.EniacInAction.com.

66. K. Von Neumann, “Actual Running …” (type-

script version), JvN-LOC, pp. 5–6.

67. We are not sure how Klara von Neumann and

Metropolis handled the exponential growth in

punched cards that would take place during

the course of a calculation. One suspects that

either a very small number of census times

were used or that some ad hoc manual adjust-

ment took place when the deck became

unmanageable.

68. It is not entirely clear to us why ENIAC still

stopped following the course of a neutron when

a census time was reached, resuming only when

the card it had just punched was read back in. It

could easily have been programmed to output a

census card, for analytical purposes, and then to

continue immediately by determining the fate

of the neutron during the next census period.

Still, this would have eliminated the possibility

of doubling the neutron’s “weight” between

census periods, as described above, and unless

the output deck was sorted before being reintro-

duced to ENIAC for the processing of fission

cards, the census card would still have been

read (and immediately ignored) at some future

point.

69. J. von Neumann to Ulam, letter, 18 Nov. 1948,

JvN-LOC, box 7, folder 7.

70. These documents are all found in JvN-LOC, box

11, folders 7 and 8. The program code has a title

page reading “Card Diagram//FLOW DIA-

GRAM//Coding/Function Table III Values//

Monte Carlo//Second Run.” Of these, only the

Coding section remains. A note added by J. von

Los Alamos Bets on ENIAC: Nuclear Monte Carlo Simulations, 1947–1948

62 IEEE Annals of the History of Computing

Neumann reads, “Will be needed in LA in early

January, but should then come to Princeton for

reporting, etc. JvN.” The earlier draft flow dia-

gram is a little messy and can be distinguished

from others in that folder by its lack of number-

ing. The later version is a mirror image negative

that has corrupted somewhat over the years and

is hard to read without image processing. Our

project website, www.EniacInAction.com holds

copies of the program code manuscript, a

spreadsheet file holding an annotated transcrip-

tion, a flow diagram created from the code, and

technical report by M. Priestley and T. Haigh,

“Monte Carlo Second Run Code Reconstruction

and Analysis.”

71. Some instructions included addresses or data as

well as a two-digit operation code, but most did

not. The code in the second run program used

approximately 2.5 digits per instruction.

72. Teller’s campaign for hydride weapons is dis-

cussed in G. Herken, Brotherhood of the Bomb:

The Tangled Lives and Loyalties of Robert Oppen-

heimer, Ernest Lawrence, and Edward Teller, Henry

Holt and Co., 2003.

73. J. von Neumann to K. von Neumann, letter, 7

Dec. 1948. Personal collection of Marina von Neu-

mann Whitman, copy provided by George Dyson.

This collection is cited hereafter as KvN-MvNW.

74. J. von Neumann to K. von Neumann, letter, 13

Dec. 1948, KvN-MvNW.

75. Ulam to J. von Neumann, letter, 7 Feb. 1949,

JvN-LOC, box 7, folder 7.

76. LAMS-868, “Progress Report T Division: 20 Janu-

ary 1949–20 February 1949”, March 16, 1949,

quoted in Fitzpatrick, “Igniting the Light Ele-

ments,” p. 269. The original report remains

classified.

77. One exception is C. Rope, “ENIAC as a Stored-

Program Computer: A New Look at the Old

Records,” IEEE Annals of the History of Computing,

vol. 29, no. 4, 2007, pp. 82–87.

78. Galison, “Computer Simulation and the Trading

Zone,” p. 120.

79. As reconstructed for the 50th anniversary cele-

bration, the Baby’s first program consisted of 19

instruction lines, read no input (understandable

as switches were the only input device), and ran

for 52 minutes with the intention of giving the

hardware, in particular the novel memory unit, a

thorough workout. See www.computer50.org/

mark1/firstprog.html. The programs run at the

EDSAC’s inaugural demonstration on 22 June

1949, which printed tables of squares and prime

numbers, were longer, consisting of 92 and 76

instructions, respectively, much of which was

code to print the results in an attractive format.

W. Renwick “The E.D.S.A.C. Demonstration,”

The Early British Computer Conferences,

M.R. Williams and M. Campbell-Kelly, eds.,

MIT Press, 1989, pp. 21–26.

Thomas Haigh is an associ-

ate professor of information

studies at the University of

Wisconsin–Milwaukee. His re-

search interests include the

history of computing, espe-

cially from the viewpoints of

labor history, history of tech-

nology, and business history. Haigh has a PhD in

the history and sociology of science from the

University of Pennsylvania. See more at www.

tomandmaria.com/tom. Contact him at thaigh@

computer.org.

Mark Priestley is an inde-

pendent researcher into the

history and philosophy of

computing, with a special

interest in the development of

programming. He started his

career as a programmer and

was for many years a lecturer

in software engineering at the University of West-

minster before turning to the history of comput-

ing. Priestley has a PhD in science and technology

studies from University College London. His most

recent book, A Science of Operations: Machines,

Logic, and the Invention of Programming (Springer,

2011), explores the coevolution of programming

methods and machine architecture. More infor-

mation is available at www.markpriestley.net.

Contact him at m.priestley@gmail.com.

Crispin Rope has been in-

terested in ENIAC since reading

Douglas Hartree’s pamphlet on

the machine from 1947 and

has pursued a vocational inter-

est in its history for more than

a decade. His earlier work on

this topic has been published

in IEEE Annals of the History of Computing and Resur-

rection: The Bulletin of the Computer Conservation Soci-

ety. Contact him at westerfield@btconnect.com.

63July–September 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

